药物化学数据分析中标签不平衡和不确定性处理的最新进展

Joao Carlos Silva de Souza, Suzana Gomes Claudino, Rodolfo da Silva Simoes, Patricia Rufino Oliveira, K. M. Honório
{"title":"药物化学数据分析中标签不平衡和不确定性处理的最新进展","authors":"Joao Carlos Silva de Souza, Suzana Gomes Claudino, Rodolfo da Silva Simoes, Patricia Rufino Oliveira, K. M. Honório","doi":"10.1109/SAI.2016.7555985","DOIUrl":null,"url":null,"abstract":"The discovery of new drugs is a very important area of study in medicinal chemistry. Developing a drug is not an easy task, as much time and money are needed to undertake all steps required for the development and test of new drugs. Amid this context, chemoinformatics is the area that has the role of interfacing between chemistry and computing, assisting in the process of identifying potential new drugs, through machine learning techniques for classification. This article will present the difficulties of classification found in chemoinformatics and approach machine learning techniques that, applied in the context of chemoinformatics, assist in treating issues related to uncertainty in data labeling and unbalanced classes, as they are common problems when using data sets of a chemical nature.","PeriodicalId":219896,"journal":{"name":"2016 SAI Computing Conference (SAI)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Recent advances for handling imbalancement and uncertainty in labelling in medicinal chemistry data analysis\",\"authors\":\"Joao Carlos Silva de Souza, Suzana Gomes Claudino, Rodolfo da Silva Simoes, Patricia Rufino Oliveira, K. M. Honório\",\"doi\":\"10.1109/SAI.2016.7555985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The discovery of new drugs is a very important area of study in medicinal chemistry. Developing a drug is not an easy task, as much time and money are needed to undertake all steps required for the development and test of new drugs. Amid this context, chemoinformatics is the area that has the role of interfacing between chemistry and computing, assisting in the process of identifying potential new drugs, through machine learning techniques for classification. This article will present the difficulties of classification found in chemoinformatics and approach machine learning techniques that, applied in the context of chemoinformatics, assist in treating issues related to uncertainty in data labeling and unbalanced classes, as they are common problems when using data sets of a chemical nature.\",\"PeriodicalId\":219896,\"journal\":{\"name\":\"2016 SAI Computing Conference (SAI)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 SAI Computing Conference (SAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAI.2016.7555985\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 SAI Computing Conference (SAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAI.2016.7555985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

新药的发现是药物化学研究的一个重要领域。开发一种药物并不是一件容易的事情,因为开发和测试新药所需的所有步骤都需要大量的时间和金钱。在这种背景下,化学信息学是一个在化学和计算之间发挥接口作用的领域,通过机器学习技术进行分类,协助识别潜在的新药。本文将介绍化学信息学中发现的分类困难和方法机器学习技术,这些技术应用于化学信息学的背景下,有助于处理与数据标记不确定性和不平衡类相关的问题,因为它们是使用化学性质的数据集时常见的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recent advances for handling imbalancement and uncertainty in labelling in medicinal chemistry data analysis
The discovery of new drugs is a very important area of study in medicinal chemistry. Developing a drug is not an easy task, as much time and money are needed to undertake all steps required for the development and test of new drugs. Amid this context, chemoinformatics is the area that has the role of interfacing between chemistry and computing, assisting in the process of identifying potential new drugs, through machine learning techniques for classification. This article will present the difficulties of classification found in chemoinformatics and approach machine learning techniques that, applied in the context of chemoinformatics, assist in treating issues related to uncertainty in data labeling and unbalanced classes, as they are common problems when using data sets of a chemical nature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信