二维约束晶格再生增强超薄α-硅薄膜的再结晶

Hao Zhang, Ming Li, Gong Chen, Yuancheng Yang, Ru Huang
{"title":"二维约束晶格再生增强超薄α-硅薄膜的再结晶","authors":"Hao Zhang, Ming Li, Gong Chen, Yuancheng Yang, Ru Huang","doi":"10.1109/INEC.2016.7589305","DOIUrl":null,"url":null,"abstract":"In this paper, the improved recrystallization of ultra-thin amorphous silicon (α-Si) film was realized by two-dimensionally confined lattice regrowth with normal rapid thermal annealing process. By experimental investigation, the α-Si films with thickness of 400 Å were found to be recrystallized even at 850°C for only 35s rapid thermal annealing (RTA). With capped Si3N4 layer, the lattice regrowth was confined more strictly to along the film plane so that smoother and higher-quality polycrystalline silicon film was obtained which is suitable for future monolithic three dimensional (3D) stacked integration processes.","PeriodicalId":416565,"journal":{"name":"2016 IEEE International Nanoelectronics Conference (INEC)","volume":"09 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Enhanced recrystallization of ultra-thin α-silicon film by 2-D confined lattice regrowth\",\"authors\":\"Hao Zhang, Ming Li, Gong Chen, Yuancheng Yang, Ru Huang\",\"doi\":\"10.1109/INEC.2016.7589305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the improved recrystallization of ultra-thin amorphous silicon (α-Si) film was realized by two-dimensionally confined lattice regrowth with normal rapid thermal annealing process. By experimental investigation, the α-Si films with thickness of 400 Å were found to be recrystallized even at 850°C for only 35s rapid thermal annealing (RTA). With capped Si3N4 layer, the lattice regrowth was confined more strictly to along the film plane so that smoother and higher-quality polycrystalline silicon film was obtained which is suitable for future monolithic three dimensional (3D) stacked integration processes.\",\"PeriodicalId\":416565,\"journal\":{\"name\":\"2016 IEEE International Nanoelectronics Conference (INEC)\",\"volume\":\"09 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Nanoelectronics Conference (INEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INEC.2016.7589305\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Nanoelectronics Conference (INEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INEC.2016.7589305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文采用常规快速热退火工艺对超薄非晶硅(α-Si)薄膜进行了二维约束晶格再生,实现了超薄非晶硅(α-Si)薄膜的再结晶改进。通过实验研究发现,即使在850℃下快速热退火(RTA) 35s,厚度为400 Å的α-Si薄膜也能再结晶。封顶Si3N4层后,晶格再生更严格地限制在薄膜平面上,从而获得更光滑、质量更高的多晶硅薄膜,适用于未来的单片三维(3D)堆叠集成工艺。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced recrystallization of ultra-thin α-silicon film by 2-D confined lattice regrowth
In this paper, the improved recrystallization of ultra-thin amorphous silicon (α-Si) film was realized by two-dimensionally confined lattice regrowth with normal rapid thermal annealing process. By experimental investigation, the α-Si films with thickness of 400 Å were found to be recrystallized even at 850°C for only 35s rapid thermal annealing (RTA). With capped Si3N4 layer, the lattice regrowth was confined more strictly to along the film plane so that smoother and higher-quality polycrystalline silicon film was obtained which is suitable for future monolithic three dimensional (3D) stacked integration processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信