基于DRNN神经网络的电热炉温度解耦控制

Wen Dingdu
{"title":"基于DRNN神经网络的电热炉温度解耦控制","authors":"Wen Dingdu","doi":"10.1109/ICECTECH.2010.5479934","DOIUrl":null,"url":null,"abstract":"For the electric heating coupling furnace problem, according to Jacobian information identification of DRNN neural network, the PID decoupling control method based on DRNN neural network setting is proposed for electrical heater furnace. And the electrical heater furnace time-varying system is simulated. Simulation results show that compared with the general PID decoupling control, the PID decoupling control based on DRNN neural network has good decoupling and self-learning control performance characteristics.","PeriodicalId":178300,"journal":{"name":"2010 2nd International Conference on Electronic Computer Technology","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Decoupling control of electric heating furnace temperature based on DRNN neural network\",\"authors\":\"Wen Dingdu\",\"doi\":\"10.1109/ICECTECH.2010.5479934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the electric heating coupling furnace problem, according to Jacobian information identification of DRNN neural network, the PID decoupling control method based on DRNN neural network setting is proposed for electrical heater furnace. And the electrical heater furnace time-varying system is simulated. Simulation results show that compared with the general PID decoupling control, the PID decoupling control based on DRNN neural network has good decoupling and self-learning control performance characteristics.\",\"PeriodicalId\":178300,\"journal\":{\"name\":\"2010 2nd International Conference on Electronic Computer Technology\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd International Conference on Electronic Computer Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECTECH.2010.5479934\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Conference on Electronic Computer Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECTECH.2010.5479934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

针对电加热耦合炉问题,根据DRNN神经网络的雅可比信息辨识,提出了基于DRNN神经网络整定的电加热炉PID解耦控制方法。并对电加热炉时变系统进行了仿真。仿真结果表明,与一般PID解耦控制相比,基于DRNN神经网络的PID解耦控制具有良好的解耦和自学习控制性能特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decoupling control of electric heating furnace temperature based on DRNN neural network
For the electric heating coupling furnace problem, according to Jacobian information identification of DRNN neural network, the PID decoupling control method based on DRNN neural network setting is proposed for electrical heater furnace. And the electrical heater furnace time-varying system is simulated. Simulation results show that compared with the general PID decoupling control, the PID decoupling control based on DRNN neural network has good decoupling and self-learning control performance characteristics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信