推土机自动减障的模型学习与预测控制

W. J. Wagner, K. Driggs-Campbell, A. Soylemezoglu
{"title":"推土机自动减障的模型学习与预测控制","authors":"W. J. Wagner, K. Driggs-Campbell, A. Soylemezoglu","doi":"10.1109/IROS47612.2022.9981911","DOIUrl":null,"url":null,"abstract":"We investigate how employing model learning methods in concert with model predictive control (MPC) can be used to automate obstacle reduction to mitigate risks to Combat Engineers operating construction equipment in an active battlefield. We focus on the task of earthen berm removal using a bladed vehicle. We introduce a novel data-driven formulation for earthmoving dynamics that enables prediction of the vehicle and detailed terrain state over a one second horizon. In a simulation environment, we first record demonstrations from a human operator and then train two different earthmoving models to produce predictions of the high-dimensional state using under six minutes of data. Optimization over the learned model is performed to select an action sequence, constrained to a 2D space of template action trajectories. Simple recovery controllers are implemented to improve controller performance when the model predictions degrade. This system yields near human-level performance on a berm removal task, indicating that model learning and predictive control is a promising data-efficient approach to autonomous earthmoving.","PeriodicalId":431373,"journal":{"name":"2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Model Learning and Predictive Control for Autonomous Obstacle Reduction via Bulldozing\",\"authors\":\"W. J. Wagner, K. Driggs-Campbell, A. Soylemezoglu\",\"doi\":\"10.1109/IROS47612.2022.9981911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate how employing model learning methods in concert with model predictive control (MPC) can be used to automate obstacle reduction to mitigate risks to Combat Engineers operating construction equipment in an active battlefield. We focus on the task of earthen berm removal using a bladed vehicle. We introduce a novel data-driven formulation for earthmoving dynamics that enables prediction of the vehicle and detailed terrain state over a one second horizon. In a simulation environment, we first record demonstrations from a human operator and then train two different earthmoving models to produce predictions of the high-dimensional state using under six minutes of data. Optimization over the learned model is performed to select an action sequence, constrained to a 2D space of template action trajectories. Simple recovery controllers are implemented to improve controller performance when the model predictions degrade. This system yields near human-level performance on a berm removal task, indicating that model learning and predictive control is a promising data-efficient approach to autonomous earthmoving.\",\"PeriodicalId\":431373,\"journal\":{\"name\":\"2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS47612.2022.9981911\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS47612.2022.9981911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们研究了如何将模型学习方法与模型预测控制(MPC)相结合,用于自动减少障碍,以减轻战斗工程师在活跃战场上操作建筑设备的风险。我们的重点是土质护堤的清除任务,使用有叶片的车辆。我们介绍了一种新的数据驱动的土方动力学公式,可以预测车辆和一秒视界内的详细地形状态。在模拟环境中,我们首先记录人类操作员的演示,然后训练两种不同的土方模型,以使用不到六分钟的数据产生高维状态的预测。对学习到的模型进行优化,以选择一个动作序列,约束于模板动作轨迹的二维空间。为了在模型预测下降时提高控制器的性能,实现了简单的恢复控制器。该系统在护堤拆除任务中产生接近人类水平的性能,表明模型学习和预测控制是一种有前途的数据高效的自主土方方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model Learning and Predictive Control for Autonomous Obstacle Reduction via Bulldozing
We investigate how employing model learning methods in concert with model predictive control (MPC) can be used to automate obstacle reduction to mitigate risks to Combat Engineers operating construction equipment in an active battlefield. We focus on the task of earthen berm removal using a bladed vehicle. We introduce a novel data-driven formulation for earthmoving dynamics that enables prediction of the vehicle and detailed terrain state over a one second horizon. In a simulation environment, we first record demonstrations from a human operator and then train two different earthmoving models to produce predictions of the high-dimensional state using under six minutes of data. Optimization over the learned model is performed to select an action sequence, constrained to a 2D space of template action trajectories. Simple recovery controllers are implemented to improve controller performance when the model predictions degrade. This system yields near human-level performance on a berm removal task, indicating that model learning and predictive control is a promising data-efficient approach to autonomous earthmoving.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信