P. Jeavons, Andrius Vaicenavicius, Stanislav Živný
{"title":"具有布尔支持的最小加权克隆","authors":"P. Jeavons, Andrius Vaicenavicius, Stanislav Živný","doi":"10.1109/ISMVL.2016.10","DOIUrl":null,"url":null,"abstract":"We study algebraic structures called weighted clones. These structures characterise the computational complexity of discrete optimisation problems of special form, known as valued constraint satisfaction problems. We identify all minimal weighted clones for every Boolean support clone.","PeriodicalId":246194,"journal":{"name":"2016 IEEE 46th International Symposium on Multiple-Valued Logic (ISMVL)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Minimal Weighted Clones with Boolean Support\",\"authors\":\"P. Jeavons, Andrius Vaicenavicius, Stanislav Živný\",\"doi\":\"10.1109/ISMVL.2016.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study algebraic structures called weighted clones. These structures characterise the computational complexity of discrete optimisation problems of special form, known as valued constraint satisfaction problems. We identify all minimal weighted clones for every Boolean support clone.\",\"PeriodicalId\":246194,\"journal\":{\"name\":\"2016 IEEE 46th International Symposium on Multiple-Valued Logic (ISMVL)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 46th International Symposium on Multiple-Valued Logic (ISMVL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.2016.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 46th International Symposium on Multiple-Valued Logic (ISMVL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2016.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We study algebraic structures called weighted clones. These structures characterise the computational complexity of discrete optimisation problems of special form, known as valued constraint satisfaction problems. We identify all minimal weighted clones for every Boolean support clone.