基于机器学习的PEMFC不确定量化电压退化预测

Xin Yang, Fengxiang Chen, Jieran Jiao, Shiguang Liu
{"title":"基于机器学习的PEMFC不确定量化电压退化预测","authors":"Xin Yang, Fengxiang Chen, Jieran Jiao, Shiguang Liu","doi":"10.1109/CVCI54083.2021.9661176","DOIUrl":null,"url":null,"abstract":"The voltage degradation trend prediction has been attached great importance to the application of proton exchange membrane fuel cell systems. Based on Gaussian process regression (GPR) and Bayesian neural network (BNN), this paper uses proton exchange membrane fuel cell dataset to predict the voltage degradation trend. Further, the uncertainty representation of prediction results is realized based on GPR and BNN. Finally, the mean absolute error and root mean square error are used as performance indicators to evaluate the prediction performance. The experimental results show that the evaluation indexes of BNN reach 0.00523, 0.00486 for mean absolute error and 0.007145, 0.007283 for root mean square error, which are less than that of GPR.","PeriodicalId":419836,"journal":{"name":"2021 5th CAA International Conference on Vehicular Control and Intelligence (CVCI)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Machine learning-based voltage degradation prediction with uncertainty quantifications for PEMFC\",\"authors\":\"Xin Yang, Fengxiang Chen, Jieran Jiao, Shiguang Liu\",\"doi\":\"10.1109/CVCI54083.2021.9661176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The voltage degradation trend prediction has been attached great importance to the application of proton exchange membrane fuel cell systems. Based on Gaussian process regression (GPR) and Bayesian neural network (BNN), this paper uses proton exchange membrane fuel cell dataset to predict the voltage degradation trend. Further, the uncertainty representation of prediction results is realized based on GPR and BNN. Finally, the mean absolute error and root mean square error are used as performance indicators to evaluate the prediction performance. The experimental results show that the evaluation indexes of BNN reach 0.00523, 0.00486 for mean absolute error and 0.007145, 0.007283 for root mean square error, which are less than that of GPR.\",\"PeriodicalId\":419836,\"journal\":{\"name\":\"2021 5th CAA International Conference on Vehicular Control and Intelligence (CVCI)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 5th CAA International Conference on Vehicular Control and Intelligence (CVCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVCI54083.2021.9661176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 5th CAA International Conference on Vehicular Control and Intelligence (CVCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVCI54083.2021.9661176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

电压退化趋势预测是质子交换膜燃料电池系统应用的重要内容。基于高斯过程回归(GPR)和贝叶斯神经网络(BNN),利用质子交换膜燃料电池数据对电池电压退化趋势进行预测。在此基础上,实现了基于GPR和BNN的预测结果的不确定性表示。最后以平均绝对误差和均方根误差作为性能指标来评价预测的性能。实验结果表明,BNN的评价指标平均绝对误差达到0.00523、0.00486,均方根误差达到0.007145、0.007283,均小于GPR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning-based voltage degradation prediction with uncertainty quantifications for PEMFC
The voltage degradation trend prediction has been attached great importance to the application of proton exchange membrane fuel cell systems. Based on Gaussian process regression (GPR) and Bayesian neural network (BNN), this paper uses proton exchange membrane fuel cell dataset to predict the voltage degradation trend. Further, the uncertainty representation of prediction results is realized based on GPR and BNN. Finally, the mean absolute error and root mean square error are used as performance indicators to evaluate the prediction performance. The experimental results show that the evaluation indexes of BNN reach 0.00523, 0.00486 for mean absolute error and 0.007145, 0.007283 for root mean square error, which are less than that of GPR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信