基于数据流的运行时精度可重构加法器误差补偿方法

Shujuan Yin, Zheyu Liu, Guihong Li, F. Qiao, Qi Wei, Yuanfeng Wu, Lianru Gao, Xinjun Liu, Huazhong Yang
{"title":"基于数据流的运行时精度可重构加法器误差补偿方法","authors":"Shujuan Yin, Zheyu Liu, Guihong Li, F. Qiao, Qi Wei, Yuanfeng Wu, Lianru Gao, Xinjun Liu, Huazhong Yang","doi":"10.1109/ISQED48828.2020.9136984","DOIUrl":null,"url":null,"abstract":"The promulgation of Internet-of-Things technologies requires higher energy efficiency than the past. Approximate computing is a promising computation paradigm in the post-Moore era. It seeks a subtle balance between computation accuracy and many other metrics, especially power consumption. Thereinto, approximate adders are important because addition is the essential operation in most applications. In this article, we propose a runtime accuracy reconfigurable adder with the accurate mode and 16 approximate modes with different accuracy. The statistical error model of the adder is built on two typical dataflow graphs: the adder chain and adder tree. Then, we introduce two methods to compensate for the accuracy loss based on the error model: Input Gating and Dataflow Reorganization. Our proposed adder achieves higher configuration flexibility with much less area overhead. The experiment results show our methods can make average output error reduce up to 61% without energy cost.","PeriodicalId":225828,"journal":{"name":"2020 21st International Symposium on Quality Electronic Design (ISQED)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"RARA: Dataflow Based Error Compensation Methods with Runtime Accuracy-Reconfigurable Adder\",\"authors\":\"Shujuan Yin, Zheyu Liu, Guihong Li, F. Qiao, Qi Wei, Yuanfeng Wu, Lianru Gao, Xinjun Liu, Huazhong Yang\",\"doi\":\"10.1109/ISQED48828.2020.9136984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The promulgation of Internet-of-Things technologies requires higher energy efficiency than the past. Approximate computing is a promising computation paradigm in the post-Moore era. It seeks a subtle balance between computation accuracy and many other metrics, especially power consumption. Thereinto, approximate adders are important because addition is the essential operation in most applications. In this article, we propose a runtime accuracy reconfigurable adder with the accurate mode and 16 approximate modes with different accuracy. The statistical error model of the adder is built on two typical dataflow graphs: the adder chain and adder tree. Then, we introduce two methods to compensate for the accuracy loss based on the error model: Input Gating and Dataflow Reorganization. Our proposed adder achieves higher configuration flexibility with much less area overhead. The experiment results show our methods can make average output error reduce up to 61% without energy cost.\",\"PeriodicalId\":225828,\"journal\":{\"name\":\"2020 21st International Symposium on Quality Electronic Design (ISQED)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 21st International Symposium on Quality Electronic Design (ISQED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED48828.2020.9136984\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 21st International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED48828.2020.9136984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

物联网技术的普及对能源效率的要求比过去更高。近似计算是后摩尔时代一种很有前途的计算范式。它在计算精度和许多其他指标(尤其是功耗)之间寻求微妙的平衡。其中,近似加法器很重要,因为加法在大多数应用中都是必不可少的操作。本文提出了一种具有精确模式和16种不同精度的近似模式的运行时精度可重构加法器。在加法器链和加法器树两种典型的数据流图上建立了加法器的统计误差模型。然后介绍了基于误差模型补偿精度损失的两种方法:输入门控和数据流重组。我们提出的加法器以更少的面积开销实现了更高的配置灵活性。实验结果表明,该方法在不消耗能量的情况下,平均输出误差可降低61%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RARA: Dataflow Based Error Compensation Methods with Runtime Accuracy-Reconfigurable Adder
The promulgation of Internet-of-Things technologies requires higher energy efficiency than the past. Approximate computing is a promising computation paradigm in the post-Moore era. It seeks a subtle balance between computation accuracy and many other metrics, especially power consumption. Thereinto, approximate adders are important because addition is the essential operation in most applications. In this article, we propose a runtime accuracy reconfigurable adder with the accurate mode and 16 approximate modes with different accuracy. The statistical error model of the adder is built on two typical dataflow graphs: the adder chain and adder tree. Then, we introduce two methods to compensate for the accuracy loss based on the error model: Input Gating and Dataflow Reorganization. Our proposed adder achieves higher configuration flexibility with much less area overhead. The experiment results show our methods can make average output error reduce up to 61% without energy cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信