Geancarlo Abich, Rafael Garibotti, Jonas Gava, R. Reis, Luciano Ost
{"title":"线程并行性对卷积神经网络软误差可靠性的影响","authors":"Geancarlo Abich, Rafael Garibotti, Jonas Gava, R. Reis, Luciano Ost","doi":"10.1109/LASCAS53948.2022.9789088","DOIUrl":null,"url":null,"abstract":"Convolution neural networks (CNNs) have been incorporated into resource-constrained edge devices to intelligently manage and process local data coming from a variety of sensors. Thread parallelism has been used to boost the performance of neural networks, but only few works address the effect of these parallel modifications on the soft error reliability of underlying models running on edge devices. In this sense, this work aims to assess the soft error reliability of a multi-threaded version of a CNN model developed based on the Arm CMSIS-NN kernels. Results show that the developed threaded CNN model increases performance at the cost of low memory footprint overhead. Promoted multi-threaded CNN model also provides better soft error reliability w.r.t. the original sequential version.","PeriodicalId":356481,"journal":{"name":"2022 IEEE 13th Latin America Symposium on Circuits and System (LASCAS)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Impact of Thread Parallelism on the Soft Error Reliability of Convolution Neural Networks\",\"authors\":\"Geancarlo Abich, Rafael Garibotti, Jonas Gava, R. Reis, Luciano Ost\",\"doi\":\"10.1109/LASCAS53948.2022.9789088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolution neural networks (CNNs) have been incorporated into resource-constrained edge devices to intelligently manage and process local data coming from a variety of sensors. Thread parallelism has been used to boost the performance of neural networks, but only few works address the effect of these parallel modifications on the soft error reliability of underlying models running on edge devices. In this sense, this work aims to assess the soft error reliability of a multi-threaded version of a CNN model developed based on the Arm CMSIS-NN kernels. Results show that the developed threaded CNN model increases performance at the cost of low memory footprint overhead. Promoted multi-threaded CNN model also provides better soft error reliability w.r.t. the original sequential version.\",\"PeriodicalId\":356481,\"journal\":{\"name\":\"2022 IEEE 13th Latin America Symposium on Circuits and System (LASCAS)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 13th Latin America Symposium on Circuits and System (LASCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LASCAS53948.2022.9789088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 13th Latin America Symposium on Circuits and System (LASCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LASCAS53948.2022.9789088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Impact of Thread Parallelism on the Soft Error Reliability of Convolution Neural Networks
Convolution neural networks (CNNs) have been incorporated into resource-constrained edge devices to intelligently manage and process local data coming from a variety of sensors. Thread parallelism has been used to boost the performance of neural networks, but only few works address the effect of these parallel modifications on the soft error reliability of underlying models running on edge devices. In this sense, this work aims to assess the soft error reliability of a multi-threaded version of a CNN model developed based on the Arm CMSIS-NN kernels. Results show that the developed threaded CNN model increases performance at the cost of low memory footprint overhead. Promoted multi-threaded CNN model also provides better soft error reliability w.r.t. the original sequential version.