基于音乐高光检测的音乐情感分类

Jun-Yong Lee, Jiyeun Kim, Hyoung‐Gook Kim
{"title":"基于音乐高光检测的音乐情感分类","authors":"Jun-Yong Lee, Jiyeun Kim, Hyoung‐Gook Kim","doi":"10.1109/ICISA.2014.6847435","DOIUrl":null,"url":null,"abstract":"This paper presents a music emotion classification based on music highlight detection. To find a highlight segment of songs, we use only energy information based on normalized MDCT coefficients of audio streams. With AdaBoost algorithm, the proposed tempo feature is combined with timbre features and improves the performance of music emotion classification based on the detected music highlight segment. Experimental results confirm that the proposed method achieves preliminary promising results in terms of accuracy.","PeriodicalId":117185,"journal":{"name":"2014 International Conference on Information Science & Applications (ICISA)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Music Emotion Classification Based on Music Highlight Detection\",\"authors\":\"Jun-Yong Lee, Jiyeun Kim, Hyoung‐Gook Kim\",\"doi\":\"10.1109/ICISA.2014.6847435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a music emotion classification based on music highlight detection. To find a highlight segment of songs, we use only energy information based on normalized MDCT coefficients of audio streams. With AdaBoost algorithm, the proposed tempo feature is combined with timbre features and improves the performance of music emotion classification based on the detected music highlight segment. Experimental results confirm that the proposed method achieves preliminary promising results in terms of accuracy.\",\"PeriodicalId\":117185,\"journal\":{\"name\":\"2014 International Conference on Information Science & Applications (ICISA)\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Information Science & Applications (ICISA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICISA.2014.6847435\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Information Science & Applications (ICISA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISA.2014.6847435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种基于音乐高光检测的音乐情感分类方法。为了找到歌曲的亮点片段,我们只使用基于音频流的归一化MDCT系数的能量信息。通过AdaBoost算法,将所提出的节奏特征与音色特征相结合,提高了基于检测到的音乐高光片段的音乐情感分类性能。实验结果表明,该方法在精度方面取得了初步的良好效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Music Emotion Classification Based on Music Highlight Detection
This paper presents a music emotion classification based on music highlight detection. To find a highlight segment of songs, we use only energy information based on normalized MDCT coefficients of audio streams. With AdaBoost algorithm, the proposed tempo feature is combined with timbre features and improves the performance of music emotion classification based on the detected music highlight segment. Experimental results confirm that the proposed method achieves preliminary promising results in terms of accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信