射影空间PG(r,4)中距离帽点4的最大纠缠EAQECCs的构造

Qiang Fu, Rui Li, Liangdong Lv, Yang Liu
{"title":"射影空间PG(r,4)中距离帽点4的最大纠缠EAQECCs的构造","authors":"Qiang Fu, Rui Li, Liangdong Lv, Yang Liu","doi":"10.1109/ICNISC.2017.00014","DOIUrl":null,"url":null,"abstract":"The entanglement-assisted (EA) formalism is a generalization of the standard stabilizer formalism, and it can transform arbitrary quaternary classical linear codes into entanglement-assisted quantum error correcting codes (EAQECCs) by using of shared entanglement between the sender and the receiver. Using a decomposition of the 126-cap in PG(5,4), we firstly constructed LCD n-cap with 6The entanglement-assisted (EA) formalism is a generalization of the standard stabilizer formalism, and it can transform arbitrary quaternary classical linear codes into entanglement-assisted quantum error correcting codes (EAQECCs) by using of shared entanglement between the sender and the receiver. Using a decomposition of the 126-cap in PG(5,4), we firstly constructed LCD n-cap with 6≤n≤120. From these LCD caps, we then derived the related maximal entanglement [[n, n-6,4;6]] EAQECCs. Finally, using LCD LCD subcaps of 126-cap obtained, we constructed maximal entanglement EAQECCs with parameters [[n, n-;k,4;k]] for 6≤k≤11.","PeriodicalId":429511,"journal":{"name":"2017 International Conference on Network and Information Systems for Computers (ICNISC)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of Maximal Entanglement EAQECCs of Distance 4 from Caps in Projective Space PG(r,4)\",\"authors\":\"Qiang Fu, Rui Li, Liangdong Lv, Yang Liu\",\"doi\":\"10.1109/ICNISC.2017.00014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The entanglement-assisted (EA) formalism is a generalization of the standard stabilizer formalism, and it can transform arbitrary quaternary classical linear codes into entanglement-assisted quantum error correcting codes (EAQECCs) by using of shared entanglement between the sender and the receiver. Using a decomposition of the 126-cap in PG(5,4), we firstly constructed LCD n-cap with 6The entanglement-assisted (EA) formalism is a generalization of the standard stabilizer formalism, and it can transform arbitrary quaternary classical linear codes into entanglement-assisted quantum error correcting codes (EAQECCs) by using of shared entanglement between the sender and the receiver. Using a decomposition of the 126-cap in PG(5,4), we firstly constructed LCD n-cap with 6≤n≤120. From these LCD caps, we then derived the related maximal entanglement [[n, n-6,4;6]] EAQECCs. Finally, using LCD LCD subcaps of 126-cap obtained, we constructed maximal entanglement EAQECCs with parameters [[n, n-;k,4;k]] for 6≤k≤11.\",\"PeriodicalId\":429511,\"journal\":{\"name\":\"2017 International Conference on Network and Information Systems for Computers (ICNISC)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Network and Information Systems for Computers (ICNISC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNISC.2017.00014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Network and Information Systems for Computers (ICNISC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNISC.2017.00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

纠缠辅助(EA)形式是标准稳定器形式的推广,它可以利用发送方和接收方之间共享的纠缠,将任意四元经典线性码转换为纠缠辅助量子纠错码。通过对PG(5,4)中的126-cap的分解,我们首先构造了具有6的LCD n-cap。纠缠辅助(EA)形式是标准稳定器形式的推广,它可以利用发送端和接收端之间的共享纠缠将任意四元经典线性码转换为纠缠辅助量子纠错码(EAQECCs)。通过对PG(5,4)中126-cap的分解,我们首先构造了6≤n≤120的LCD n-cap。然后,我们从这些LCD帽中推导出相关的最大缠结[[n, n-6,4;6]] EAQECCs。最后,利用得到的126-cap的LCD子cap,我们构造了参数为[[n, n-;k,4;k]]的最大纠缠EAQECCs,对于6≤k≤11。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Construction of Maximal Entanglement EAQECCs of Distance 4 from Caps in Projective Space PG(r,4)
The entanglement-assisted (EA) formalism is a generalization of the standard stabilizer formalism, and it can transform arbitrary quaternary classical linear codes into entanglement-assisted quantum error correcting codes (EAQECCs) by using of shared entanglement between the sender and the receiver. Using a decomposition of the 126-cap in PG(5,4), we firstly constructed LCD n-cap with 6The entanglement-assisted (EA) formalism is a generalization of the standard stabilizer formalism, and it can transform arbitrary quaternary classical linear codes into entanglement-assisted quantum error correcting codes (EAQECCs) by using of shared entanglement between the sender and the receiver. Using a decomposition of the 126-cap in PG(5,4), we firstly constructed LCD n-cap with 6≤n≤120. From these LCD caps, we then derived the related maximal entanglement [[n, n-6,4;6]] EAQECCs. Finally, using LCD LCD subcaps of 126-cap obtained, we constructed maximal entanglement EAQECCs with parameters [[n, n-;k,4;k]] for 6≤k≤11.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信