在能源和尺寸受限的系统中实现sobel过滤器的节能平台

Rokas Jurevičius, Virginijus Marcinkevicius
{"title":"在能源和尺寸受限的系统中实现sobel过滤器的节能平台","authors":"Rokas Jurevičius, Virginijus Marcinkevicius","doi":"10.1109/AIEEE.2015.7367310","DOIUrl":null,"url":null,"abstract":"Designing a high performance and energy efficient image processing solution for a very limited platform of a small UAV (Unmanned Air Vehicle) is very challenging. We address this issue by conducting a research of low power (under 10 Watt) and small sized (slightly larger than a credit card) embedded platforms with high performance computing capabilities. Sobel filter algorithm used in image processing will be benchmarked using different embedded platforms and frameworks of parallel computing to evaluate energy consumption and image processing performance, thus easing the design selections for a software engineer. The research results show, that Radxa Rock2 platform using Mali T764 GPU appeared to be 6.85x more energy efficient and 3.7x times better performing than Parallella platform using 16 core Epiphany co-processor when computing Sobel filter on 1080p resolution image.","PeriodicalId":415830,"journal":{"name":"2015 IEEE 3rd Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Energy efficient platform for sobel filter implementation in energy and size constrained systems\",\"authors\":\"Rokas Jurevičius, Virginijus Marcinkevicius\",\"doi\":\"10.1109/AIEEE.2015.7367310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Designing a high performance and energy efficient image processing solution for a very limited platform of a small UAV (Unmanned Air Vehicle) is very challenging. We address this issue by conducting a research of low power (under 10 Watt) and small sized (slightly larger than a credit card) embedded platforms with high performance computing capabilities. Sobel filter algorithm used in image processing will be benchmarked using different embedded platforms and frameworks of parallel computing to evaluate energy consumption and image processing performance, thus easing the design selections for a software engineer. The research results show, that Radxa Rock2 platform using Mali T764 GPU appeared to be 6.85x more energy efficient and 3.7x times better performing than Parallella platform using 16 core Epiphany co-processor when computing Sobel filter on 1080p resolution image.\",\"PeriodicalId\":415830,\"journal\":{\"name\":\"2015 IEEE 3rd Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE)\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 3rd Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIEEE.2015.7367310\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 3rd Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIEEE.2015.7367310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

为一个非常有限的小型无人机平台设计一个高性能和节能的图像处理解决方案是非常具有挑战性的。我们通过研究具有高性能计算能力的低功耗(10瓦以下)和小尺寸(略大于信用卡)嵌入式平台来解决这个问题。图像处理中使用的Sobel滤波算法将使用不同的嵌入式平台和并行计算框架进行基准测试,以评估能耗和图像处理性能,从而简化软件工程师的设计选择。研究结果表明,在1080p分辨率图像上计算Sobel滤波器时,使用Mali T764 GPU的Radxa Rock2平台比使用16核Epiphany协处理器的parallelella平台节能6.85倍,性能提高3.7倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy efficient platform for sobel filter implementation in energy and size constrained systems
Designing a high performance and energy efficient image processing solution for a very limited platform of a small UAV (Unmanned Air Vehicle) is very challenging. We address this issue by conducting a research of low power (under 10 Watt) and small sized (slightly larger than a credit card) embedded platforms with high performance computing capabilities. Sobel filter algorithm used in image processing will be benchmarked using different embedded platforms and frameworks of parallel computing to evaluate energy consumption and image processing performance, thus easing the design selections for a software engineer. The research results show, that Radxa Rock2 platform using Mali T764 GPU appeared to be 6.85x more energy efficient and 3.7x times better performing than Parallella platform using 16 core Epiphany co-processor when computing Sobel filter on 1080p resolution image.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信