利用跟踪关系进行Web服务推荐

Fatma Slaimi, S. Sellami, Omar Boucelma, A. Hassine
{"title":"利用跟踪关系进行Web服务推荐","authors":"Fatma Slaimi, S. Sellami, Omar Boucelma, A. Hassine","doi":"10.1109/ICEBE.2016.045","DOIUrl":null,"url":null,"abstract":"Existing Web services recommendation approaches are based on usage statistics or QoS properties, leaving aside the evolution of the services' ecosystem. These approaches do not always capture new or more recent users' preferences resulting in recommendations with possibly obsolete or less relevant services. In this paper, we describe a novel Web services recommendation approach where the services' ecosystem is represented as a heterogeneous multi-graph, and edges may have different semantics. The recommendation process relies on data mining techniques to suggest services \"of interest\" to a user.","PeriodicalId":305614,"journal":{"name":"2016 IEEE 13th International Conference on e-Business Engineering (ICEBE)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Leveraging Track Relationships for Web Service Recommendation\",\"authors\":\"Fatma Slaimi, S. Sellami, Omar Boucelma, A. Hassine\",\"doi\":\"10.1109/ICEBE.2016.045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing Web services recommendation approaches are based on usage statistics or QoS properties, leaving aside the evolution of the services' ecosystem. These approaches do not always capture new or more recent users' preferences resulting in recommendations with possibly obsolete or less relevant services. In this paper, we describe a novel Web services recommendation approach where the services' ecosystem is represented as a heterogeneous multi-graph, and edges may have different semantics. The recommendation process relies on data mining techniques to suggest services \\\"of interest\\\" to a user.\",\"PeriodicalId\":305614,\"journal\":{\"name\":\"2016 IEEE 13th International Conference on e-Business Engineering (ICEBE)\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 13th International Conference on e-Business Engineering (ICEBE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEBE.2016.045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 13th International Conference on e-Business Engineering (ICEBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEBE.2016.045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

现有的Web服务推荐方法基于使用统计数据或QoS属性,而不考虑服务生态系统的演变。这些方法并不总是能够捕获新的或最近的用户偏好,从而导致推荐可能过时或不太相关的服务。在本文中,我们描述了一种新的Web服务推荐方法,其中服务的生态系统表示为异构多图,并且边缘可能具有不同的语义。推荐过程依靠数据挖掘技术向用户推荐“感兴趣”的服务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leveraging Track Relationships for Web Service Recommendation
Existing Web services recommendation approaches are based on usage statistics or QoS properties, leaving aside the evolution of the services' ecosystem. These approaches do not always capture new or more recent users' preferences resulting in recommendations with possibly obsolete or less relevant services. In this paper, we describe a novel Web services recommendation approach where the services' ecosystem is represented as a heterogeneous multi-graph, and edges may have different semantics. The recommendation process relies on data mining techniques to suggest services "of interest" to a user.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信