使用颜色直方图和形状属性的图像自动寿司分类

Wanjeka Phetphoung, Narongwut Kittimeteeworakul, Rattapoom Waranusast
{"title":"使用颜色直方图和形状属性的图像自动寿司分类","authors":"Wanjeka Phetphoung, Narongwut Kittimeteeworakul, Rattapoom Waranusast","doi":"10.1109/ICT-ISPC.2014.6923223","DOIUrl":null,"url":null,"abstract":"Self-service sushi vendors are becoming popular with Thai people. The cashier operation is usually a bottleneck in a purchase process and can cause long queues at the cashier counter. This paper proposes an automatic sushi point-of-sale system that captures sushi images from a webcam to identify types of sushi and calculate the total cost of that purchase. The system segments each piece of sushi from the background using color information. Histograms of color in RGB and HSV color spaces and shape properties of each piece of sushi are used as features for k-Nearest Neighbor classifier. Experimental results showed the accuracy of the proposed system at 93.7%.","PeriodicalId":300460,"journal":{"name":"2014 Third ICT International Student Project Conference (ICT-ISPC)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Automatic sushi classification from images using color histograms and shape properties\",\"authors\":\"Wanjeka Phetphoung, Narongwut Kittimeteeworakul, Rattapoom Waranusast\",\"doi\":\"10.1109/ICT-ISPC.2014.6923223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Self-service sushi vendors are becoming popular with Thai people. The cashier operation is usually a bottleneck in a purchase process and can cause long queues at the cashier counter. This paper proposes an automatic sushi point-of-sale system that captures sushi images from a webcam to identify types of sushi and calculate the total cost of that purchase. The system segments each piece of sushi from the background using color information. Histograms of color in RGB and HSV color spaces and shape properties of each piece of sushi are used as features for k-Nearest Neighbor classifier. Experimental results showed the accuracy of the proposed system at 93.7%.\",\"PeriodicalId\":300460,\"journal\":{\"name\":\"2014 Third ICT International Student Project Conference (ICT-ISPC)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Third ICT International Student Project Conference (ICT-ISPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICT-ISPC.2014.6923223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Third ICT International Student Project Conference (ICT-ISPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICT-ISPC.2014.6923223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

自助寿司店越来越受到泰国人的欢迎。收银操作通常是购买过程中的瓶颈,可能导致在收银柜台前排起长队。本文提出了一个自动寿司销售点系统,该系统从网络摄像头捕获寿司图像,以识别寿司的类型并计算购买的总成本。该系统利用颜色信息将每一块寿司从背景中分割出来。使用RGB和HSV颜色空间的颜色直方图以及每块寿司的形状属性作为k-最近邻分类器的特征。实验结果表明,该系统的准确率为93.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic sushi classification from images using color histograms and shape properties
Self-service sushi vendors are becoming popular with Thai people. The cashier operation is usually a bottleneck in a purchase process and can cause long queues at the cashier counter. This paper proposes an automatic sushi point-of-sale system that captures sushi images from a webcam to identify types of sushi and calculate the total cost of that purchase. The system segments each piece of sushi from the background using color information. Histograms of color in RGB and HSV color spaces and shape properties of each piece of sushi are used as features for k-Nearest Neighbor classifier. Experimental results showed the accuracy of the proposed system at 93.7%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信