存在SVR的ORPF公式的奇异值分解

A. Berizzi, C. Bovo, M. Delfanti, Marco Merlo, F. Tortello
{"title":"存在SVR的ORPF公式的奇异值分解","authors":"A. Berizzi, C. Bovo, M. Delfanti, Marco Merlo, F. Tortello","doi":"10.1109/MELCON.2006.1653260","DOIUrl":null,"url":null,"abstract":"This paper compares some different formulations of voltage stability indices derived from the Jacobian power flow matrix in presence of the secondary voltage regulation. The work is aimed at individuating an appropriate formulation of the Jacobian power flow matrix in order to calculate the maximum singular value to be used in the objective function of an ORPF (optimal reactive power flow). The different methodologies to calculate these indices are tested on a complex model of the EHV Italian transmission system","PeriodicalId":299928,"journal":{"name":"MELECON 2006 - 2006 IEEE Mediterranean Electrotechnical Conference","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Singular value decomposition for an ORPF formulation in presence of SVR\",\"authors\":\"A. Berizzi, C. Bovo, M. Delfanti, Marco Merlo, F. Tortello\",\"doi\":\"10.1109/MELCON.2006.1653260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper compares some different formulations of voltage stability indices derived from the Jacobian power flow matrix in presence of the secondary voltage regulation. The work is aimed at individuating an appropriate formulation of the Jacobian power flow matrix in order to calculate the maximum singular value to be used in the objective function of an ORPF (optimal reactive power flow). The different methodologies to calculate these indices are tested on a complex model of the EHV Italian transmission system\",\"PeriodicalId\":299928,\"journal\":{\"name\":\"MELECON 2006 - 2006 IEEE Mediterranean Electrotechnical Conference\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MELECON 2006 - 2006 IEEE Mediterranean Electrotechnical Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MELCON.2006.1653260\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MELECON 2006 - 2006 IEEE Mediterranean Electrotechnical Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MELCON.2006.1653260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本文比较了在二次调压条件下,由雅可比潮流矩阵导出的电压稳定指标的几种不同公式。这项工作的目的是使雅可比潮流矩阵的适当公式个体化,以便计算用于ORPF(最优无功潮流)目标函数的最大奇异值。在意大利超高压输电系统的复杂模型上测试了计算这些指数的不同方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Singular value decomposition for an ORPF formulation in presence of SVR
This paper compares some different formulations of voltage stability indices derived from the Jacobian power flow matrix in presence of the secondary voltage regulation. The work is aimed at individuating an appropriate formulation of the Jacobian power flow matrix in order to calculate the maximum singular value to be used in the objective function of an ORPF (optimal reactive power flow). The different methodologies to calculate these indices are tested on a complex model of the EHV Italian transmission system
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信