无监督学习技术在DNA微阵列数据库中的应用:一个比较案例研究

Judith E. Gómez-Cuervo, A. Chavoya
{"title":"无监督学习技术在DNA微阵列数据库中的应用:一个比较案例研究","authors":"Judith E. Gómez-Cuervo, A. Chavoya","doi":"10.1109/ICEV56253.2022.9959173","DOIUrl":null,"url":null,"abstract":"We present the application of the unsupervised machine learning clustering techniques K-Means and Fuzzy C-Means to DNA microarray gene expression data from breast cancer tissues. The mathematical basis and the development of the algorithm of the techniques are shown, and the Expectation Maximization technique is presented as an alternative for the assignment of missing data. Results show that the best method for the clustering of the genetic expression data under study is the Fuzzy C-Means algorithm.","PeriodicalId":178334,"journal":{"name":"2022 IEEE International Conference on Engineering Veracruz (ICEV)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of unsupervised learning techniques to DNA microarray databases: a comparative case study\",\"authors\":\"Judith E. Gómez-Cuervo, A. Chavoya\",\"doi\":\"10.1109/ICEV56253.2022.9959173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the application of the unsupervised machine learning clustering techniques K-Means and Fuzzy C-Means to DNA microarray gene expression data from breast cancer tissues. The mathematical basis and the development of the algorithm of the techniques are shown, and the Expectation Maximization technique is presented as an alternative for the assignment of missing data. Results show that the best method for the clustering of the genetic expression data under study is the Fuzzy C-Means algorithm.\",\"PeriodicalId\":178334,\"journal\":{\"name\":\"2022 IEEE International Conference on Engineering Veracruz (ICEV)\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Engineering Veracruz (ICEV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEV56253.2022.9959173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Engineering Veracruz (ICEV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEV56253.2022.9959173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了将无监督机器学习聚类技术K-Means和模糊C-Means应用于乳腺癌组织的DNA微阵列基因表达数据。介绍了这些技术的数学基础和算法的发展,并提出了期望最大化技术作为缺失数据分配的替代方法。结果表明,对所研究的遗传表达数据进行聚类的最佳方法是模糊c均值算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of unsupervised learning techniques to DNA microarray databases: a comparative case study
We present the application of the unsupervised machine learning clustering techniques K-Means and Fuzzy C-Means to DNA microarray gene expression data from breast cancer tissues. The mathematical basis and the development of the algorithm of the techniques are shown, and the Expectation Maximization technique is presented as an alternative for the assignment of missing data. Results show that the best method for the clustering of the genetic expression data under study is the Fuzzy C-Means algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信