神经网络在医学诊断中的应用

V. A. Sapozhkov, O. Budadin, A. S. Churilova, B. F. Falkov, Z. Sapozhkova
{"title":"神经网络在医学诊断中的应用","authors":"V. A. Sapozhkov, O. Budadin, A. S. Churilova, B. F. Falkov, Z. Sapozhkova","doi":"10.14489/lcmp.2021.01.pp.040-051","DOIUrl":null,"url":null,"abstract":"This article discusses the possibilities of application of artificial neural networks to solve problems of increasing the diagnostic outcomes in clinical laboratory examination. High diagnostic sensitivity (96 %) and diagnostic accuracy (89.5 %) of the results were shown on a large amount of cellular material digitized by artificial intelligence microscopy automation system like the Vision Cyto Pap.\nThe high resolution and sharpness of digital slides, the mode of viewing objects (cells) in the gallery, quick access to the results of preclassification, all of these factors together allow to reduce turnearound time in more than 2.5 times reducing disadvantages of the microscopy.Application of artificial neural networks does not substitute a doctor’s skills. The role in validation of reports eligible only for cytopathologist. This concept indicates a carefully approach for staff working with a microscope, respectful attitude to them professional skills, and highlights a personalized approach to patients.","PeriodicalId":287737,"journal":{"name":"Laboratornaya i klinicheskaya meditsina. Farmatsiya","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"APPLICATION OF NEURAL NETWORKS IN MEDICAL DIAGNOSTICS\",\"authors\":\"V. A. Sapozhkov, O. Budadin, A. S. Churilova, B. F. Falkov, Z. Sapozhkova\",\"doi\":\"10.14489/lcmp.2021.01.pp.040-051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article discusses the possibilities of application of artificial neural networks to solve problems of increasing the diagnostic outcomes in clinical laboratory examination. High diagnostic sensitivity (96 %) and diagnostic accuracy (89.5 %) of the results were shown on a large amount of cellular material digitized by artificial intelligence microscopy automation system like the Vision Cyto Pap.\\nThe high resolution and sharpness of digital slides, the mode of viewing objects (cells) in the gallery, quick access to the results of preclassification, all of these factors together allow to reduce turnearound time in more than 2.5 times reducing disadvantages of the microscopy.Application of artificial neural networks does not substitute a doctor’s skills. The role in validation of reports eligible only for cytopathologist. This concept indicates a carefully approach for staff working with a microscope, respectful attitude to them professional skills, and highlights a personalized approach to patients.\",\"PeriodicalId\":287737,\"journal\":{\"name\":\"Laboratornaya i klinicheskaya meditsina. Farmatsiya\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laboratornaya i klinicheskaya meditsina. Farmatsiya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14489/lcmp.2021.01.pp.040-051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laboratornaya i klinicheskaya meditsina. Farmatsiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14489/lcmp.2021.01.pp.040-051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文讨论了应用人工神经网络解决临床实验室检查中提高诊断结果问题的可能性。采用Vision Cyto Pap等人工智能显微镜自动化系统对大量细胞材料进行数字化处理,结果的诊断灵敏度(96%)和诊断准确率(89.5%)较高。数字载玻片的高分辨率和清晰度,在图库中查看对象(细胞)的模式,快速访问预分类结果,所有这些因素共同允许将周转时间减少2.5倍以上,减少了显微镜的缺点。人工神经网络的应用并不能替代医生的技能。在报告验证中的作用仅适用于细胞病理学家。这一概念表明了对显微镜工作人员的谨慎态度,对他们的专业技能的尊重态度,并强调了对患者的个性化方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
APPLICATION OF NEURAL NETWORKS IN MEDICAL DIAGNOSTICS
This article discusses the possibilities of application of artificial neural networks to solve problems of increasing the diagnostic outcomes in clinical laboratory examination. High diagnostic sensitivity (96 %) and diagnostic accuracy (89.5 %) of the results were shown on a large amount of cellular material digitized by artificial intelligence microscopy automation system like the Vision Cyto Pap. The high resolution and sharpness of digital slides, the mode of viewing objects (cells) in the gallery, quick access to the results of preclassification, all of these factors together allow to reduce turnearound time in more than 2.5 times reducing disadvantages of the microscopy.Application of artificial neural networks does not substitute a doctor’s skills. The role in validation of reports eligible only for cytopathologist. This concept indicates a carefully approach for staff working with a microscope, respectful attitude to them professional skills, and highlights a personalized approach to patients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信