{"title":"一个宽带高动态时域系统的电磁干扰测量在k波段高达26 GHz","authors":"C. Hoffmann, P. Russer","doi":"10.1109/ISEMC.2011.6038361","DOIUrl":null,"url":null,"abstract":"In this work, a low-noise, high-dynamic time-domain EMI measurement system that allows for measurements from 9 kHz - 26 GHz is presented. It combines ultra-fast analog-to-digital-conversion and real-time digital signal processing on a field-programmable-gate-array (FPGA) with ultra-broadband multi-stage down-conversion. The system IF dynamic range is shown to exceed the requirements of CISPR 16-1-1 by over 20 dB and allows for the measurement of high-dynamic range signals like radar pulses. The system sensitivity is increased by the use of low-loss components and integrated, broadband low-noise amplifiers (LNA). This yields an ultra-low noise floor power spectral density of typically below -150 dBm/Hz over the complete frequency range. The high system sensitivity allows for the characterization of broadband, low-level signals near the noise floor, like ultra-wideband (UWB) communication. Scan time is decreased by several orders of magnitude compared to heterodyne EMI receivers. A scan from 9 kHz to 26 GHz with a 9 kHz IF filter and a dwell-time of 100 ms is completed in under 200 s, while over 5-106 frequency points are calculated.","PeriodicalId":440959,"journal":{"name":"2011 IEEE International Symposium on Electromagnetic Compatibility","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A broadband high-dynamic time-domain system for EMI measurements in K-Band up to 26 GHz\",\"authors\":\"C. Hoffmann, P. Russer\",\"doi\":\"10.1109/ISEMC.2011.6038361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a low-noise, high-dynamic time-domain EMI measurement system that allows for measurements from 9 kHz - 26 GHz is presented. It combines ultra-fast analog-to-digital-conversion and real-time digital signal processing on a field-programmable-gate-array (FPGA) with ultra-broadband multi-stage down-conversion. The system IF dynamic range is shown to exceed the requirements of CISPR 16-1-1 by over 20 dB and allows for the measurement of high-dynamic range signals like radar pulses. The system sensitivity is increased by the use of low-loss components and integrated, broadband low-noise amplifiers (LNA). This yields an ultra-low noise floor power spectral density of typically below -150 dBm/Hz over the complete frequency range. The high system sensitivity allows for the characterization of broadband, low-level signals near the noise floor, like ultra-wideband (UWB) communication. Scan time is decreased by several orders of magnitude compared to heterodyne EMI receivers. A scan from 9 kHz to 26 GHz with a 9 kHz IF filter and a dwell-time of 100 ms is completed in under 200 s, while over 5-106 frequency points are calculated.\",\"PeriodicalId\":440959,\"journal\":{\"name\":\"2011 IEEE International Symposium on Electromagnetic Compatibility\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Symposium on Electromagnetic Compatibility\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISEMC.2011.6038361\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Electromagnetic Compatibility","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISEMC.2011.6038361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A broadband high-dynamic time-domain system for EMI measurements in K-Band up to 26 GHz
In this work, a low-noise, high-dynamic time-domain EMI measurement system that allows for measurements from 9 kHz - 26 GHz is presented. It combines ultra-fast analog-to-digital-conversion and real-time digital signal processing on a field-programmable-gate-array (FPGA) with ultra-broadband multi-stage down-conversion. The system IF dynamic range is shown to exceed the requirements of CISPR 16-1-1 by over 20 dB and allows for the measurement of high-dynamic range signals like radar pulses. The system sensitivity is increased by the use of low-loss components and integrated, broadband low-noise amplifiers (LNA). This yields an ultra-low noise floor power spectral density of typically below -150 dBm/Hz over the complete frequency range. The high system sensitivity allows for the characterization of broadband, low-level signals near the noise floor, like ultra-wideband (UWB) communication. Scan time is decreased by several orders of magnitude compared to heterodyne EMI receivers. A scan from 9 kHz to 26 GHz with a 9 kHz IF filter and a dwell-time of 100 ms is completed in under 200 s, while over 5-106 frequency points are calculated.