J. Kim, A. Basarab, P. Hill, D. Bull, D. Kouamé, A. Achim
{"title":"利用近似信息传递从压缩测量中重建超声图像","authors":"J. Kim, A. Basarab, P. Hill, D. Bull, D. Kouamé, A. Achim","doi":"10.1109/EUSIPCO.2016.7760310","DOIUrl":null,"url":null,"abstract":"In this paper we propose a novel framework for compressive sampling reconstruction of biomedical ultrasonic images based on the Approximate Message Passing (AMP) algorithm. AMP is an iterative algorithm that performs image reconstruction through image denoising within a compressive sampling framework. In this work, our aim is to evaluate the merits of several combinations of a denoiser and a transform domain, which are the two main factors that determine the recovery performance. In particular, we investigate reconstruction performance in the spatial, DCT, and wavelet domains. We compare the results with existing reconstruction algorithms already used in ultrasound imaging and quantify the performance improvement.","PeriodicalId":127068,"journal":{"name":"2016 24th European Signal Processing Conference (EUSIPCO)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Ultrasound image reconstruction from compressed measurements using approximate message passing\",\"authors\":\"J. Kim, A. Basarab, P. Hill, D. Bull, D. Kouamé, A. Achim\",\"doi\":\"10.1109/EUSIPCO.2016.7760310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a novel framework for compressive sampling reconstruction of biomedical ultrasonic images based on the Approximate Message Passing (AMP) algorithm. AMP is an iterative algorithm that performs image reconstruction through image denoising within a compressive sampling framework. In this work, our aim is to evaluate the merits of several combinations of a denoiser and a transform domain, which are the two main factors that determine the recovery performance. In particular, we investigate reconstruction performance in the spatial, DCT, and wavelet domains. We compare the results with existing reconstruction algorithms already used in ultrasound imaging and quantify the performance improvement.\",\"PeriodicalId\":127068,\"journal\":{\"name\":\"2016 24th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 24th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUSIPCO.2016.7760310\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 24th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUSIPCO.2016.7760310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ultrasound image reconstruction from compressed measurements using approximate message passing
In this paper we propose a novel framework for compressive sampling reconstruction of biomedical ultrasonic images based on the Approximate Message Passing (AMP) algorithm. AMP is an iterative algorithm that performs image reconstruction through image denoising within a compressive sampling framework. In this work, our aim is to evaluate the merits of several combinations of a denoiser and a transform domain, which are the two main factors that determine the recovery performance. In particular, we investigate reconstruction performance in the spatial, DCT, and wavelet domains. We compare the results with existing reconstruction algorithms already used in ultrasound imaging and quantify the performance improvement.