Keng Goh, Daniel Melia Boix, J. McWhinnie, Gareth Smith
{"title":"旋翼机起落架在不同地面条件下的控制","authors":"Keng Goh, Daniel Melia Boix, J. McWhinnie, Gareth Smith","doi":"10.1109/ICMA.2016.7558557","DOIUrl":null,"url":null,"abstract":"This paper presents an example of a PID controller applied to a 2-dimensional rotorcraft landing gear with two DOF (degrees of freedom), as well as the design of the landing gear dynamic model. The focus of this work is to maintain the landing spot to prevent the landing gear from skidding sideways on the ground, while adapting to different ground conditions. A nonlinear model for the landing gear dynamics formulated by solving Lagrange equation, is described in detailed, as well as the angle generation equations to provide reference signal to the system. The simulation results based on different surface conditions are presented.","PeriodicalId":260197,"journal":{"name":"2016 IEEE International Conference on Mechatronics and Automation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Control of rotorcraft landing gear on different ground conditions\",\"authors\":\"Keng Goh, Daniel Melia Boix, J. McWhinnie, Gareth Smith\",\"doi\":\"10.1109/ICMA.2016.7558557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an example of a PID controller applied to a 2-dimensional rotorcraft landing gear with two DOF (degrees of freedom), as well as the design of the landing gear dynamic model. The focus of this work is to maintain the landing spot to prevent the landing gear from skidding sideways on the ground, while adapting to different ground conditions. A nonlinear model for the landing gear dynamics formulated by solving Lagrange equation, is described in detailed, as well as the angle generation equations to provide reference signal to the system. The simulation results based on different surface conditions are presented.\",\"PeriodicalId\":260197,\"journal\":{\"name\":\"2016 IEEE International Conference on Mechatronics and Automation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Mechatronics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMA.2016.7558557\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Mechatronics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMA.2016.7558557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Control of rotorcraft landing gear on different ground conditions
This paper presents an example of a PID controller applied to a 2-dimensional rotorcraft landing gear with two DOF (degrees of freedom), as well as the design of the landing gear dynamic model. The focus of this work is to maintain the landing spot to prevent the landing gear from skidding sideways on the ground, while adapting to different ground conditions. A nonlinear model for the landing gear dynamics formulated by solving Lagrange equation, is described in detailed, as well as the angle generation equations to provide reference signal to the system. The simulation results based on different surface conditions are presented.