基于深度学习的远场视频监控人物检测与分类

H. Wei, M. Laszewski, N. Kehtarnavaz
{"title":"基于深度学习的远场视频监控人物检测与分类","authors":"H. Wei, M. Laszewski, N. Kehtarnavaz","doi":"10.1109/DCAS.2018.8620111","DOIUrl":null,"url":null,"abstract":"This paper presents a deep learning-based approach to detect and classify persons in video data captured from distances of several miles via a high-power lens video camera. For detection, a set of computationally efficient image processing steps are considered to identify moving areas that contain a person. These areas are then passed onto a convolutional neural network classifier whose convolutional layers consist of the GoogleNet transfer learning. Despite the challenges associated with the video dataset examined in terms of the low resolution of persons appearing in the video data and the presence of heat haze and camera shaking, the developed approach generated 90% classification accuracy.","PeriodicalId":320317,"journal":{"name":"2018 IEEE 13th Dallas Circuits and Systems Conference (DCAS)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Deep Learning-Based Person Detection and Classification for Far Field Video Surveillance\",\"authors\":\"H. Wei, M. Laszewski, N. Kehtarnavaz\",\"doi\":\"10.1109/DCAS.2018.8620111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a deep learning-based approach to detect and classify persons in video data captured from distances of several miles via a high-power lens video camera. For detection, a set of computationally efficient image processing steps are considered to identify moving areas that contain a person. These areas are then passed onto a convolutional neural network classifier whose convolutional layers consist of the GoogleNet transfer learning. Despite the challenges associated with the video dataset examined in terms of the low resolution of persons appearing in the video data and the presence of heat haze and camera shaking, the developed approach generated 90% classification accuracy.\",\"PeriodicalId\":320317,\"journal\":{\"name\":\"2018 IEEE 13th Dallas Circuits and Systems Conference (DCAS)\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 13th Dallas Circuits and Systems Conference (DCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCAS.2018.8620111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 13th Dallas Circuits and Systems Conference (DCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCAS.2018.8620111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

本文提出了一种基于深度学习的方法,通过高功率镜头摄像机从几英里远的距离捕获视频数据来检测和分类人物。对于检测,考虑一组计算效率高的图像处理步骤来识别包含人的移动区域。然后将这些区域传递给卷积神经网络分类器,该分类器的卷积层由GoogleNet迁移学习组成。尽管在视频数据中出现的人的低分辨率以及热雾和摄像机抖动方面存在与视频数据集相关的挑战,但开发的方法产生了90%的分类准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning-Based Person Detection and Classification for Far Field Video Surveillance
This paper presents a deep learning-based approach to detect and classify persons in video data captured from distances of several miles via a high-power lens video camera. For detection, a set of computationally efficient image processing steps are considered to identify moving areas that contain a person. These areas are then passed onto a convolutional neural network classifier whose convolutional layers consist of the GoogleNet transfer learning. Despite the challenges associated with the video dataset examined in terms of the low resolution of persons appearing in the video data and the presence of heat haze and camera shaking, the developed approach generated 90% classification accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信