鲁棒克里格卡尔曼滤波

Brian Baingana, E. Dall’Anese, G. Mateos, G. Giannakis
{"title":"鲁棒克里格卡尔曼滤波","authors":"Brian Baingana, E. Dall’Anese, G. Mateos, G. Giannakis","doi":"10.1109/ACSSC.2015.7421400","DOIUrl":null,"url":null,"abstract":"Although the kriged Kalman filter (KKF) has well-documented merits for prediction of spatial-temporal processes, its performance degrades in the presence of outliers due to anomalous events, or measurement equipment failures. This paper proposes a robust KKF model that explicitly accounts for presence of measurement outliers. Exploiting outlier sparsity, a novel ℓ1-regularized estimator that jointly predicts the spatial-temporal process at unmonitored locations, while identifying measurement outliers is put forth. Numerical tests are conducted on a synthetic Internet protocol (IP) network, and real transformer load data. Test results corroborate the effectiveness of the novel estimator in joint spatial prediction and outlier identification.","PeriodicalId":172015,"journal":{"name":"2015 49th Asilomar Conference on Signals, Systems and Computers","volume":"425 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Robust kriged Kalman filtering\",\"authors\":\"Brian Baingana, E. Dall’Anese, G. Mateos, G. Giannakis\",\"doi\":\"10.1109/ACSSC.2015.7421400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although the kriged Kalman filter (KKF) has well-documented merits for prediction of spatial-temporal processes, its performance degrades in the presence of outliers due to anomalous events, or measurement equipment failures. This paper proposes a robust KKF model that explicitly accounts for presence of measurement outliers. Exploiting outlier sparsity, a novel ℓ1-regularized estimator that jointly predicts the spatial-temporal process at unmonitored locations, while identifying measurement outliers is put forth. Numerical tests are conducted on a synthetic Internet protocol (IP) network, and real transformer load data. Test results corroborate the effectiveness of the novel estimator in joint spatial prediction and outlier identification.\",\"PeriodicalId\":172015,\"journal\":{\"name\":\"2015 49th Asilomar Conference on Signals, Systems and Computers\",\"volume\":\"425 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 49th Asilomar Conference on Signals, Systems and Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSSC.2015.7421400\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 49th Asilomar Conference on Signals, Systems and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2015.7421400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

尽管克里格卡尔曼滤波器(KKF)在预测时空过程方面具有充分的优点,但由于异常事件或测量设备故障,它的性能在存在异常值时下降。本文提出了一个鲁棒的KKF模型,该模型明确地考虑了测量异常值的存在。利用离群稀疏性,提出了一种能够在识别测量离群值的同时,对非监测位置的时空过程进行联合预测的1-正则化估计。在综合互联网协议(IP)网络和实际变压器负荷数据上进行了数值试验。实验结果证实了该估计器在联合空间预测和离群值识别方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust kriged Kalman filtering
Although the kriged Kalman filter (KKF) has well-documented merits for prediction of spatial-temporal processes, its performance degrades in the presence of outliers due to anomalous events, or measurement equipment failures. This paper proposes a robust KKF model that explicitly accounts for presence of measurement outliers. Exploiting outlier sparsity, a novel ℓ1-regularized estimator that jointly predicts the spatial-temporal process at unmonitored locations, while identifying measurement outliers is put forth. Numerical tests are conducted on a synthetic Internet protocol (IP) network, and real transformer load data. Test results corroborate the effectiveness of the novel estimator in joint spatial prediction and outlier identification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信