Abad Gallardo Claudia Sofía, Merchán Muñoz Brian David
{"title":"血友病综述:利用rAAV载体治疗血友病B的基因疗法","authors":"Abad Gallardo Claudia Sofía, Merchán Muñoz Brian David","doi":"10.21931/rb/cs/2019.02.01.16","DOIUrl":null,"url":null,"abstract":"Hemophilia is an X-linked recessive disorder characterized by the deficiency in one protein essential for blood coagulation. There are two main types of variants of this disease; hemophilia A (HA) which is related with blood clotting factor VIII (FVIII) deficiency and hemophilia B (HB) which is related with factor IX (FIX) deficiency. Nowadays, there are several options to treat this disorder, however, the most efficient is gene therapy since it has a long-term effect, and contrasts with traditional methods. This review is focused on hemophilia B treatment because FIX is a smaller protein than FVIII (<1kb), and thereby is easier to study. Within gene therapy, methods which use recombinant adeno-associated virus (rAAV) vectors are the best alternative to treat HB since they are safe and reliable. Moreover, rAAV vectors have the advantage of having a low inflammatory potential, a non-pathogenic status, plus the potential for long-term expression of the transferred gene. However, some patients showed an immune response to the capsids of the vectors before treatment. Hence, possible solutions were needed; one of them being the use of anti-antibodies. Finally, clinical trials results showed that under the use of the optimized codon hFIXco and serotype 8 the levels of expression were persistent, demonstrating the potential of gene therapy for hemophilia B treatment.","PeriodicalId":214615,"journal":{"name":"Humboldt kolleg Ibarra 2019","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Hemophilia Disorder Review: Gene Therapy for Hemophilia B Treatment using rAAV vectors\",\"authors\":\"Abad Gallardo Claudia Sofía, Merchán Muñoz Brian David\",\"doi\":\"10.21931/rb/cs/2019.02.01.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hemophilia is an X-linked recessive disorder characterized by the deficiency in one protein essential for blood coagulation. There are two main types of variants of this disease; hemophilia A (HA) which is related with blood clotting factor VIII (FVIII) deficiency and hemophilia B (HB) which is related with factor IX (FIX) deficiency. Nowadays, there are several options to treat this disorder, however, the most efficient is gene therapy since it has a long-term effect, and contrasts with traditional methods. This review is focused on hemophilia B treatment because FIX is a smaller protein than FVIII (<1kb), and thereby is easier to study. Within gene therapy, methods which use recombinant adeno-associated virus (rAAV) vectors are the best alternative to treat HB since they are safe and reliable. Moreover, rAAV vectors have the advantage of having a low inflammatory potential, a non-pathogenic status, plus the potential for long-term expression of the transferred gene. However, some patients showed an immune response to the capsids of the vectors before treatment. Hence, possible solutions were needed; one of them being the use of anti-antibodies. Finally, clinical trials results showed that under the use of the optimized codon hFIXco and serotype 8 the levels of expression were persistent, demonstrating the potential of gene therapy for hemophilia B treatment.\",\"PeriodicalId\":214615,\"journal\":{\"name\":\"Humboldt kolleg Ibarra 2019\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Humboldt kolleg Ibarra 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21931/rb/cs/2019.02.01.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Humboldt kolleg Ibarra 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21931/rb/cs/2019.02.01.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Hemophilia Disorder Review: Gene Therapy for Hemophilia B Treatment using rAAV vectors
Hemophilia is an X-linked recessive disorder characterized by the deficiency in one protein essential for blood coagulation. There are two main types of variants of this disease; hemophilia A (HA) which is related with blood clotting factor VIII (FVIII) deficiency and hemophilia B (HB) which is related with factor IX (FIX) deficiency. Nowadays, there are several options to treat this disorder, however, the most efficient is gene therapy since it has a long-term effect, and contrasts with traditional methods. This review is focused on hemophilia B treatment because FIX is a smaller protein than FVIII (<1kb), and thereby is easier to study. Within gene therapy, methods which use recombinant adeno-associated virus (rAAV) vectors are the best alternative to treat HB since they are safe and reliable. Moreover, rAAV vectors have the advantage of having a low inflammatory potential, a non-pathogenic status, plus the potential for long-term expression of the transferred gene. However, some patients showed an immune response to the capsids of the vectors before treatment. Hence, possible solutions were needed; one of them being the use of anti-antibodies. Finally, clinical trials results showed that under the use of the optimized codon hFIXco and serotype 8 the levels of expression were persistent, demonstrating the potential of gene therapy for hemophilia B treatment.