基于改进自适应粒子群优化器的软件测试数据自动生成

Xiao-mei Zhu, Xian-feng Yang
{"title":"基于改进自适应粒子群优化器的软件测试数据自动生成","authors":"Xiao-mei Zhu, Xian-feng Yang","doi":"10.1109/ICCIS.2010.321","DOIUrl":null,"url":null,"abstract":"To advance efficiency of software test data generation automatically, based on traditional particle swarm optimizer (PSO) algorithm, we put forward an improved algorithm (APSO) in which inertia weight is adjusted according to the fitness value of particle. Experiment simulation result shows that APSO not only has better performance than immune genetic algorithm (IGA) but also better than PSO, and has broad application prospect in software test.","PeriodicalId":227848,"journal":{"name":"2010 International Conference on Computational and Information Sciences","volume":"132 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Software Test Data Generation Automatically Based on Improved Adaptive Particle Swarm Optimizer\",\"authors\":\"Xiao-mei Zhu, Xian-feng Yang\",\"doi\":\"10.1109/ICCIS.2010.321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To advance efficiency of software test data generation automatically, based on traditional particle swarm optimizer (PSO) algorithm, we put forward an improved algorithm (APSO) in which inertia weight is adjusted according to the fitness value of particle. Experiment simulation result shows that APSO not only has better performance than immune genetic algorithm (IGA) but also better than PSO, and has broad application prospect in software test.\",\"PeriodicalId\":227848,\"journal\":{\"name\":\"2010 International Conference on Computational and Information Sciences\",\"volume\":\"132 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Computational and Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIS.2010.321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Computational and Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIS.2010.321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

为了提高软件测试数据自动生成的效率,在传统粒子群优化算法(PSO)的基础上,提出了一种根据粒子的适应度值调整惯性权重的改进算法(APSO)。实验仿真结果表明,APSO算法不仅优于免疫遗传算法(IGA),而且优于PSO算法,在软件测试中具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Software Test Data Generation Automatically Based on Improved Adaptive Particle Swarm Optimizer
To advance efficiency of software test data generation automatically, based on traditional particle swarm optimizer (PSO) algorithm, we put forward an improved algorithm (APSO) in which inertia weight is adjusted according to the fitness value of particle. Experiment simulation result shows that APSO not only has better performance than immune genetic algorithm (IGA) but also better than PSO, and has broad application prospect in software test.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信