D. Reilly, L. Pfeiffer, G. R. Facer, K. West, A. Dzurak, B. E. Kane, R. Clarke, P. Stiles, J. O'Brien, N. Lumpkin
{"title":"半导体量子线中的多体自旋相互作用","authors":"D. Reilly, L. Pfeiffer, G. R. Facer, K. West, A. Dzurak, B. E. Kane, R. Clarke, P. Stiles, J. O'Brien, N. Lumpkin","doi":"10.1071/PH00040","DOIUrl":null,"url":null,"abstract":"Zero length quantum wires (or point contacts) exhibit unexplained conductance structure close to 0.7 × 2e 2 /h in the absence of an applied magnetic field. We have studied the density- and temperature-dependent conductance of ultra-low-disorder GaAs/AlGaAs quantum wires with nominal lengths l=0 and 2µm, fabricated from structures free of the disorder associated with modulation doping. In a direct comparision we observe structure near 0.7 × 2e 2 /h for l = 0, whereas thel = 2µm wires show structure evolving with increasing electron density to 0.5 × 2e 2 /h in zero magnetic field, the value expected for an ideal spin-split sub-band. Our results suggest the dominant mechanism through which electrons interact can be strongly affected by the length of the 1D region.","PeriodicalId":170873,"journal":{"name":"Australian Journal of Physics","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Many-body Spin Interactions in Semiconductor Quantum Wires\",\"authors\":\"D. Reilly, L. Pfeiffer, G. R. Facer, K. West, A. Dzurak, B. E. Kane, R. Clarke, P. Stiles, J. O'Brien, N. Lumpkin\",\"doi\":\"10.1071/PH00040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Zero length quantum wires (or point contacts) exhibit unexplained conductance structure close to 0.7 × 2e 2 /h in the absence of an applied magnetic field. We have studied the density- and temperature-dependent conductance of ultra-low-disorder GaAs/AlGaAs quantum wires with nominal lengths l=0 and 2µm, fabricated from structures free of the disorder associated with modulation doping. In a direct comparision we observe structure near 0.7 × 2e 2 /h for l = 0, whereas thel = 2µm wires show structure evolving with increasing electron density to 0.5 × 2e 2 /h in zero magnetic field, the value expected for an ideal spin-split sub-band. Our results suggest the dominant mechanism through which electrons interact can be strongly affected by the length of the 1D region.\",\"PeriodicalId\":170873,\"journal\":{\"name\":\"Australian Journal of Physics\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian Journal of Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1071/PH00040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1071/PH00040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
零长度量子线(或点触点)在没有外加磁场的情况下表现出接近0.7 × 2e /h的无法解释的电导结构。我们研究了标称长度为l=0和2 μ m的超低无序GaAs/AlGaAs量子线的密度和温度相关电导,这些量子线由无调制掺杂相关的无序结构制成。在直接比较中,我们观察到l = 0时的结构接近0.7 × 2e /h,而thel = 2 μ m的金属丝在零磁场下,随着电子密度的增加,其结构演变到0.5 × 2e /h,这是理想自旋分裂子带的期望值。我们的结果表明,电子相互作用的主要机制可能受到1D区域长度的强烈影响。
Many-body Spin Interactions in Semiconductor Quantum Wires
Zero length quantum wires (or point contacts) exhibit unexplained conductance structure close to 0.7 × 2e 2 /h in the absence of an applied magnetic field. We have studied the density- and temperature-dependent conductance of ultra-low-disorder GaAs/AlGaAs quantum wires with nominal lengths l=0 and 2µm, fabricated from structures free of the disorder associated with modulation doping. In a direct comparision we observe structure near 0.7 × 2e 2 /h for l = 0, whereas thel = 2µm wires show structure evolving with increasing electron density to 0.5 × 2e 2 /h in zero magnetic field, the value expected for an ideal spin-split sub-band. Our results suggest the dominant mechanism through which electrons interact can be strongly affected by the length of the 1D region.