基于卷积神经网络的肝脏肿瘤诊断新方法

Dr. G. Nallasivan, Dr. T. Jasperline, Chinnadurai Manthiramoorthy, S. Viswanathan, Dr. M. Vargheese, S. Devaraj
{"title":"基于卷积神经网络的肝脏肿瘤诊断新方法","authors":"Dr. G. Nallasivan, Dr. T. Jasperline, Chinnadurai Manthiramoorthy, S. Viswanathan, Dr. M. Vargheese, S. Devaraj","doi":"10.1109/WCONF58270.2023.10235001","DOIUrl":null,"url":null,"abstract":"Liver cancer is on the rise and may now be the most common form of the disease that claims lives. Superpixel segmentation as well as a convolutional neural network (CNN) technique are used to assess liver cancer detection while cutting down on complexity and processing time. Automatic 3D segmentation of ultrasound liver images using a combination of a time-consuming but accurate technique and a statistical texture before high-energy sound waves. Each image in the area surrounding the database point has texture characteristics extracted using two orthogonal quadratic filter banks. The atlas database has segmented liver surfaces and registered photos of livers from prior patients. The CNN technique is used to first segment the pixel location segmentation of the liver imaging from a new patient, and then to train the challenge of patient-specific frequency components in the feature representation from the atlas database. Liver cancer detection datasets include both benign and malignant cases.","PeriodicalId":202864,"journal":{"name":"2023 World Conference on Communication & Computing (WCONF)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Novel Approaches for Detect Liver Tumor Diagnosis using Convolution Neural Network\",\"authors\":\"Dr. G. Nallasivan, Dr. T. Jasperline, Chinnadurai Manthiramoorthy, S. Viswanathan, Dr. M. Vargheese, S. Devaraj\",\"doi\":\"10.1109/WCONF58270.2023.10235001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Liver cancer is on the rise and may now be the most common form of the disease that claims lives. Superpixel segmentation as well as a convolutional neural network (CNN) technique are used to assess liver cancer detection while cutting down on complexity and processing time. Automatic 3D segmentation of ultrasound liver images using a combination of a time-consuming but accurate technique and a statistical texture before high-energy sound waves. Each image in the area surrounding the database point has texture characteristics extracted using two orthogonal quadratic filter banks. The atlas database has segmented liver surfaces and registered photos of livers from prior patients. The CNN technique is used to first segment the pixel location segmentation of the liver imaging from a new patient, and then to train the challenge of patient-specific frequency components in the feature representation from the atlas database. Liver cancer detection datasets include both benign and malignant cases.\",\"PeriodicalId\":202864,\"journal\":{\"name\":\"2023 World Conference on Communication & Computing (WCONF)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 World Conference on Communication & Computing (WCONF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCONF58270.2023.10235001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 World Conference on Communication & Computing (WCONF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCONF58270.2023.10235001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

肝癌的发病率正在上升,现在可能是最常见的夺去生命的疾病。超像素分割和卷积神经网络(CNN)技术被用于评估肝癌检测,同时降低了复杂性和处理时间。超声肝脏图像的自动三维分割,使用耗时但准确的技术和高能量声波前的统计纹理相结合。数据库点周围区域的每张图像都使用两个正交二次滤波器组提取纹理特征。地图集数据库对肝脏表面进行了分割,并注册了以前患者的肝脏照片。首先利用CNN技术对新患者肝脏成像的像素定位分割进行分割,然后从atlas数据库中训练特征表示中患者特异性频率分量的挑战。肝癌检测数据集包括良性和恶性病例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Approaches for Detect Liver Tumor Diagnosis using Convolution Neural Network
Liver cancer is on the rise and may now be the most common form of the disease that claims lives. Superpixel segmentation as well as a convolutional neural network (CNN) technique are used to assess liver cancer detection while cutting down on complexity and processing time. Automatic 3D segmentation of ultrasound liver images using a combination of a time-consuming but accurate technique and a statistical texture before high-energy sound waves. Each image in the area surrounding the database point has texture characteristics extracted using two orthogonal quadratic filter banks. The atlas database has segmented liver surfaces and registered photos of livers from prior patients. The CNN technique is used to first segment the pixel location segmentation of the liver imaging from a new patient, and then to train the challenge of patient-specific frequency components in the feature representation from the atlas database. Liver cancer detection datasets include both benign and malignant cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信