基于最小值的多指纹模板最优组合方法

Anh Dan Do, Quang Hieu Dang
{"title":"基于最小值的多指纹模板最优组合方法","authors":"Anh Dan Do, Quang Hieu Dang","doi":"10.1109/ATC.2016.7764838","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel method for combining multiple fingerprint templates to improve the successful matching rate in fingerprint verification systems. Firstly, SVD is used to optimal aligning of two minutia sets. Then, based on the newly obtained overlapping area, we introduce a post-processing step to collect previously missing minutiae pairs due to nonlinear distortion. The overall advantages of our method are compared and tested in standard FVC databases in terms of RMS error, the average number of aligned minutia pairs and ROC curve of verification systems.","PeriodicalId":225413,"journal":{"name":"2016 International Conference on Advanced Technologies for Communications (ATC)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An optimal minutiae-based combining method for multiple fingerprint templates\",\"authors\":\"Anh Dan Do, Quang Hieu Dang\",\"doi\":\"10.1109/ATC.2016.7764838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel method for combining multiple fingerprint templates to improve the successful matching rate in fingerprint verification systems. Firstly, SVD is used to optimal aligning of two minutia sets. Then, based on the newly obtained overlapping area, we introduce a post-processing step to collect previously missing minutiae pairs due to nonlinear distortion. The overall advantages of our method are compared and tested in standard FVC databases in terms of RMS error, the average number of aligned minutia pairs and ROC curve of verification systems.\",\"PeriodicalId\":225413,\"journal\":{\"name\":\"2016 International Conference on Advanced Technologies for Communications (ATC)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Advanced Technologies for Communications (ATC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ATC.2016.7764838\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Advanced Technologies for Communications (ATC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATC.2016.7764838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了提高指纹验证系统的匹配成功率,提出了一种组合多个指纹模板的新方法。首先,利用奇异值分解算法对两个特征集进行最优对齐。然后,基于新获得的重叠区域,引入后处理步骤来收集之前由于非线性失真而丢失的细节对。在标准FVC数据库中,从验证系统的均方根误差(RMS)、平均排列细节对数和ROC曲线等方面对我们方法的总体优势进行了比较和检验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An optimal minutiae-based combining method for multiple fingerprint templates
This paper proposes a novel method for combining multiple fingerprint templates to improve the successful matching rate in fingerprint verification systems. Firstly, SVD is used to optimal aligning of two minutia sets. Then, based on the newly obtained overlapping area, we introduce a post-processing step to collect previously missing minutiae pairs due to nonlinear distortion. The overall advantages of our method are compared and tested in standard FVC databases in terms of RMS error, the average number of aligned minutia pairs and ROC curve of verification systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信