基于k均值的指针网络的低学习成本机器人路径规划

Wei Cheng Wang, R. Chen
{"title":"基于k均值的指针网络的低学习成本机器人路径规划","authors":"Wei Cheng Wang, R. Chen","doi":"10.1109/ACIRS.2019.8936004","DOIUrl":null,"url":null,"abstract":"Robot-path-planning is an important research that seeks the shortest path to optimize the motion cost for robots. In robot-path-planning, the computational time will significantly increase if the moving targets for a robot rise largely, while the current algorithms for the shortest path planning may be invalidated due to large input data. This work thus proposes a hybrid algorithm, called the k-means-based pointer network, to tackle the problem mentioned above. By combining the k-means clustering and pointer network, unsupervised and supervised learning respectively, this work demonstrates how to lower the learning cost drastically with smaller training data. The simulation results show that the computational time cost of the Held-Karp algorithm grows significantly when the input size increases in some amount, while the proposed algorithm climbs slightly during the increments of input size because of using smaller input data for Ptr-Net. In applications, the proposed work can be applied practically to the case of large input size, for example, the employment for the ball-collecting robot in a golf court.","PeriodicalId":338050,"journal":{"name":"2019 4th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robot Path Planning with Low Learning Cost Using a Novel K-means-based Pointer Networks\",\"authors\":\"Wei Cheng Wang, R. Chen\",\"doi\":\"10.1109/ACIRS.2019.8936004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robot-path-planning is an important research that seeks the shortest path to optimize the motion cost for robots. In robot-path-planning, the computational time will significantly increase if the moving targets for a robot rise largely, while the current algorithms for the shortest path planning may be invalidated due to large input data. This work thus proposes a hybrid algorithm, called the k-means-based pointer network, to tackle the problem mentioned above. By combining the k-means clustering and pointer network, unsupervised and supervised learning respectively, this work demonstrates how to lower the learning cost drastically with smaller training data. The simulation results show that the computational time cost of the Held-Karp algorithm grows significantly when the input size increases in some amount, while the proposed algorithm climbs slightly during the increments of input size because of using smaller input data for Ptr-Net. In applications, the proposed work can be applied practically to the case of large input size, for example, the employment for the ball-collecting robot in a golf court.\",\"PeriodicalId\":338050,\"journal\":{\"name\":\"2019 4th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 4th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACIRS.2019.8936004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 4th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACIRS.2019.8936004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机器人路径规划是寻求最短路径以优化机器人运动成本的一项重要研究。在机器人路径规划中,当机器人的运动目标大量增加时,计算时间会显著增加,而目前的最短路径规划算法由于输入数据大,可能会失效。因此,这项工作提出了一种混合算法,称为基于k均值的指针网络,以解决上述问题。通过结合k-means聚类和指针网络、无监督学习和有监督学习,本研究展示了如何在更小的训练数据下大幅降低学习成本。仿真结果表明,当输入规模增加一定数量时,Held-Karp算法的计算时间开销显著增加,而在输入规模增加的过程中,由于使用较小的Ptr-Net输入数据,该算法的计算时间开销略有上升。在实际应用中,所提出的工作可以实际应用于大输入尺寸的情况,例如高尔夫球场中球收集机器人的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robot Path Planning with Low Learning Cost Using a Novel K-means-based Pointer Networks
Robot-path-planning is an important research that seeks the shortest path to optimize the motion cost for robots. In robot-path-planning, the computational time will significantly increase if the moving targets for a robot rise largely, while the current algorithms for the shortest path planning may be invalidated due to large input data. This work thus proposes a hybrid algorithm, called the k-means-based pointer network, to tackle the problem mentioned above. By combining the k-means clustering and pointer network, unsupervised and supervised learning respectively, this work demonstrates how to lower the learning cost drastically with smaller training data. The simulation results show that the computational time cost of the Held-Karp algorithm grows significantly when the input size increases in some amount, while the proposed algorithm climbs slightly during the increments of input size because of using smaller input data for Ptr-Net. In applications, the proposed work can be applied practically to the case of large input size, for example, the employment for the ball-collecting robot in a golf court.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信