质量驱动的全局照明细化的视觉模型

R. Günther, S. Guthe, M. Guthe
{"title":"质量驱动的全局照明细化的视觉模型","authors":"R. Günther, S. Guthe, M. Guthe","doi":"10.1145/3119881.3119893","DOIUrl":null,"url":null,"abstract":"When rendering complex scenes using path-tracing methods, long processing times are required to calculate a sufficient number of samples for high quality results. In this paper, we propose a new method for priority sampling in path-tracing that exploits restrictions of the human visual system by recognizing whether an error is perceivable or not. We use the stationary wavelet transformation to efficiently calculate noise-contrasts in the image based on the standard error of the mean. We then use the Contrast Sensitivity Function and Contrast Masking of the Human Visual System to detect if an error is perceivable for any given pixel in the output image. Errors that can not be detected by a human observer are then ignored in further sampling steps, reducing the amount of samples calculated while producing the same perceived quality. This approach leads to a drastic reduction in the total number of samples required and therefore in total rendering time.","PeriodicalId":102213,"journal":{"name":"Proceedings of the ACM Symposium on Applied Perception","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A visual model for quality driven refinement of global illumination\",\"authors\":\"R. Günther, S. Guthe, M. Guthe\",\"doi\":\"10.1145/3119881.3119893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When rendering complex scenes using path-tracing methods, long processing times are required to calculate a sufficient number of samples for high quality results. In this paper, we propose a new method for priority sampling in path-tracing that exploits restrictions of the human visual system by recognizing whether an error is perceivable or not. We use the stationary wavelet transformation to efficiently calculate noise-contrasts in the image based on the standard error of the mean. We then use the Contrast Sensitivity Function and Contrast Masking of the Human Visual System to detect if an error is perceivable for any given pixel in the output image. Errors that can not be detected by a human observer are then ignored in further sampling steps, reducing the amount of samples calculated while producing the same perceived quality. This approach leads to a drastic reduction in the total number of samples required and therefore in total rendering time.\",\"PeriodicalId\":102213,\"journal\":{\"name\":\"Proceedings of the ACM Symposium on Applied Perception\",\"volume\":\"123 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM Symposium on Applied Perception\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3119881.3119893\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Symposium on Applied Perception","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3119881.3119893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当使用路径跟踪方法渲染复杂场景时,需要较长的处理时间来计算足够数量的样本以获得高质量的结果。在本文中,我们提出了一种新的路径跟踪优先采样方法,利用人类视觉系统的限制,通过识别错误是否可感知。基于均值的标准误差,利用平稳小波变换有效地计算图像中的噪声对比度。然后,我们使用人类视觉系统的对比度灵敏度函数和对比度掩蔽来检测输出图像中任何给定像素的错误是否可感知。然后在进一步的采样步骤中忽略人类观察者无法检测到的错误,从而减少计算的样本数量,同时产生相同的感知质量。这种方法导致所需样本总数的急剧减少,因此在总渲染时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A visual model for quality driven refinement of global illumination
When rendering complex scenes using path-tracing methods, long processing times are required to calculate a sufficient number of samples for high quality results. In this paper, we propose a new method for priority sampling in path-tracing that exploits restrictions of the human visual system by recognizing whether an error is perceivable or not. We use the stationary wavelet transformation to efficiently calculate noise-contrasts in the image based on the standard error of the mean. We then use the Contrast Sensitivity Function and Contrast Masking of the Human Visual System to detect if an error is perceivable for any given pixel in the output image. Errors that can not be detected by a human observer are then ignored in further sampling steps, reducing the amount of samples calculated while producing the same perceived quality. This approach leads to a drastic reduction in the total number of samples required and therefore in total rendering time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信