{"title":"质量驱动的全局照明细化的视觉模型","authors":"R. Günther, S. Guthe, M. Guthe","doi":"10.1145/3119881.3119893","DOIUrl":null,"url":null,"abstract":"When rendering complex scenes using path-tracing methods, long processing times are required to calculate a sufficient number of samples for high quality results. In this paper, we propose a new method for priority sampling in path-tracing that exploits restrictions of the human visual system by recognizing whether an error is perceivable or not. We use the stationary wavelet transformation to efficiently calculate noise-contrasts in the image based on the standard error of the mean. We then use the Contrast Sensitivity Function and Contrast Masking of the Human Visual System to detect if an error is perceivable for any given pixel in the output image. Errors that can not be detected by a human observer are then ignored in further sampling steps, reducing the amount of samples calculated while producing the same perceived quality. This approach leads to a drastic reduction in the total number of samples required and therefore in total rendering time.","PeriodicalId":102213,"journal":{"name":"Proceedings of the ACM Symposium on Applied Perception","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A visual model for quality driven refinement of global illumination\",\"authors\":\"R. Günther, S. Guthe, M. Guthe\",\"doi\":\"10.1145/3119881.3119893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When rendering complex scenes using path-tracing methods, long processing times are required to calculate a sufficient number of samples for high quality results. In this paper, we propose a new method for priority sampling in path-tracing that exploits restrictions of the human visual system by recognizing whether an error is perceivable or not. We use the stationary wavelet transformation to efficiently calculate noise-contrasts in the image based on the standard error of the mean. We then use the Contrast Sensitivity Function and Contrast Masking of the Human Visual System to detect if an error is perceivable for any given pixel in the output image. Errors that can not be detected by a human observer are then ignored in further sampling steps, reducing the amount of samples calculated while producing the same perceived quality. This approach leads to a drastic reduction in the total number of samples required and therefore in total rendering time.\",\"PeriodicalId\":102213,\"journal\":{\"name\":\"Proceedings of the ACM Symposium on Applied Perception\",\"volume\":\"123 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM Symposium on Applied Perception\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3119881.3119893\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Symposium on Applied Perception","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3119881.3119893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A visual model for quality driven refinement of global illumination
When rendering complex scenes using path-tracing methods, long processing times are required to calculate a sufficient number of samples for high quality results. In this paper, we propose a new method for priority sampling in path-tracing that exploits restrictions of the human visual system by recognizing whether an error is perceivable or not. We use the stationary wavelet transformation to efficiently calculate noise-contrasts in the image based on the standard error of the mean. We then use the Contrast Sensitivity Function and Contrast Masking of the Human Visual System to detect if an error is perceivable for any given pixel in the output image. Errors that can not be detected by a human observer are then ignored in further sampling steps, reducing the amount of samples calculated while producing the same perceived quality. This approach leads to a drastic reduction in the total number of samples required and therefore in total rendering time.