{"title":"生成和评估集体概念图","authors":"Riordan Brennan, Debbie Perouli","doi":"10.1145/3506860.3506918","DOIUrl":null,"url":null,"abstract":"Concept maps are used in education to illustrate ideas and relationships among them. Instructors employ such maps to evaluate a student’s knowledge on a subject. Collective concept maps have been recently proposed as a tool to graphically summarize a group’s rather than an individual’s understanding on a topic. In this paper, we present a methodology that automatically generates collective concept maps, which relies on grouping similar ideas into node-clusters. We present a novel clustering algorithm that is shown to produce more informational maps compared to Markov clustering. We evaluate the collective map framework by applying it to sets of a total of 56 individual maps created by teachers (grades 2-12) and students (grades 6-11) during a week-long cybersecurity camp. Finally, we discuss how collective concept maps can support longitudinal research studies on program and student outcomes by providing a novel format for knowledge exchange. We have made our tool implementation publicly available.","PeriodicalId":185465,"journal":{"name":"LAK22: 12th International Learning Analytics and Knowledge Conference","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Generating and Evaluating Collective Concept Maps\",\"authors\":\"Riordan Brennan, Debbie Perouli\",\"doi\":\"10.1145/3506860.3506918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Concept maps are used in education to illustrate ideas and relationships among them. Instructors employ such maps to evaluate a student’s knowledge on a subject. Collective concept maps have been recently proposed as a tool to graphically summarize a group’s rather than an individual’s understanding on a topic. In this paper, we present a methodology that automatically generates collective concept maps, which relies on grouping similar ideas into node-clusters. We present a novel clustering algorithm that is shown to produce more informational maps compared to Markov clustering. We evaluate the collective map framework by applying it to sets of a total of 56 individual maps created by teachers (grades 2-12) and students (grades 6-11) during a week-long cybersecurity camp. Finally, we discuss how collective concept maps can support longitudinal research studies on program and student outcomes by providing a novel format for knowledge exchange. We have made our tool implementation publicly available.\",\"PeriodicalId\":185465,\"journal\":{\"name\":\"LAK22: 12th International Learning Analytics and Knowledge Conference\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"LAK22: 12th International Learning Analytics and Knowledge Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3506860.3506918\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"LAK22: 12th International Learning Analytics and Knowledge Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3506860.3506918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Concept maps are used in education to illustrate ideas and relationships among them. Instructors employ such maps to evaluate a student’s knowledge on a subject. Collective concept maps have been recently proposed as a tool to graphically summarize a group’s rather than an individual’s understanding on a topic. In this paper, we present a methodology that automatically generates collective concept maps, which relies on grouping similar ideas into node-clusters. We present a novel clustering algorithm that is shown to produce more informational maps compared to Markov clustering. We evaluate the collective map framework by applying it to sets of a total of 56 individual maps created by teachers (grades 2-12) and students (grades 6-11) during a week-long cybersecurity camp. Finally, we discuss how collective concept maps can support longitudinal research studies on program and student outcomes by providing a novel format for knowledge exchange. We have made our tool implementation publicly available.