结构优化问题中的自适应模糊适应度粒化

M. Davarynejad, M. Akbarzadeh-Totonchi, N. Pariz, A.-R. Khorsand
{"title":"结构优化问题中的自适应模糊适应度粒化","authors":"M. Davarynejad, M. Akbarzadeh-Totonchi, N. Pariz, A.-R. Khorsand","doi":"10.1109/ISIC.2007.4450880","DOIUrl":null,"url":null,"abstract":"Computational complexity is a prohibitive factor in evolutionary optimization of sufficiently large and/or complex problems. Much of this computational complexity is due to the fitness function evaluation that may either not exist or be computationally very expensive. Here, we investigate the use of fitness granulation via an adaptive fuzzy similarity analysis as applied to two different hardware design problems that are evaluated using finite element analysis. The first design problem is a relatively simpler 2-D truss frame design with 36 parameters while the second problem is piezoelectric voltage and pattern arrangement design for static shape control in which 200 parameters are optimized. In comparison with standard application of evolutionary algorithms, statistical analysis reveals that the proposed method significantly decreases the number of fitness function evaluations while finding equally good or better solutions. Additionally, this more improvement is indicated with higher problem complexity.","PeriodicalId":184867,"journal":{"name":"2007 IEEE 22nd International Symposium on Intelligent Control","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Adaptive Fuzzy Fitness Granulation in Structural Optimization Problems\",\"authors\":\"M. Davarynejad, M. Akbarzadeh-Totonchi, N. Pariz, A.-R. Khorsand\",\"doi\":\"10.1109/ISIC.2007.4450880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computational complexity is a prohibitive factor in evolutionary optimization of sufficiently large and/or complex problems. Much of this computational complexity is due to the fitness function evaluation that may either not exist or be computationally very expensive. Here, we investigate the use of fitness granulation via an adaptive fuzzy similarity analysis as applied to two different hardware design problems that are evaluated using finite element analysis. The first design problem is a relatively simpler 2-D truss frame design with 36 parameters while the second problem is piezoelectric voltage and pattern arrangement design for static shape control in which 200 parameters are optimized. In comparison with standard application of evolutionary algorithms, statistical analysis reveals that the proposed method significantly decreases the number of fitness function evaluations while finding equally good or better solutions. Additionally, this more improvement is indicated with higher problem complexity.\",\"PeriodicalId\":184867,\"journal\":{\"name\":\"2007 IEEE 22nd International Symposium on Intelligent Control\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE 22nd International Symposium on Intelligent Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIC.2007.4450880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 22nd International Symposium on Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.2007.4450880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

计算复杂性是在足够大和/或复杂问题的进化优化中一个令人望而却步的因素。这种计算复杂性的很大一部分是由于适应度函数的评估,这种评估可能不存在,或者计算成本非常高。在这里,我们通过自适应模糊相似性分析来研究适应度颗粒的使用,并将其应用于两个不同的硬件设计问题,这些问题使用有限元分析进行评估。第一个设计问题是相对简单的二维桁架结构设计,有36个参数;第二个设计问题是静态形状控制的压电电压和图案布置设计,其中有200个参数进行了优化。与进化算法的标准应用相比,统计分析表明,该方法在找到同样好的或更好的解的同时显著减少了适应度函数评估的次数。此外,这种更大的改进与更高的问题复杂性有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Fuzzy Fitness Granulation in Structural Optimization Problems
Computational complexity is a prohibitive factor in evolutionary optimization of sufficiently large and/or complex problems. Much of this computational complexity is due to the fitness function evaluation that may either not exist or be computationally very expensive. Here, we investigate the use of fitness granulation via an adaptive fuzzy similarity analysis as applied to two different hardware design problems that are evaluated using finite element analysis. The first design problem is a relatively simpler 2-D truss frame design with 36 parameters while the second problem is piezoelectric voltage and pattern arrangement design for static shape control in which 200 parameters are optimized. In comparison with standard application of evolutionary algorithms, statistical analysis reveals that the proposed method significantly decreases the number of fitness function evaluations while finding equally good or better solutions. Additionally, this more improvement is indicated with higher problem complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信