{"title":"含SH非线性Hammerstein模型辨识的迭代和递归子空间算法","authors":"B. Aissaoui, M. Soltani, A. Chaari","doi":"10.1109/CADIAG.2017.8075684","DOIUrl":null,"url":null,"abstract":"This paper proposes a new method to estimate the parameters of both blocks, linear and nonlinear using an iterative and recursive subspace approaches. More importantly, in an attempt to show the extent to which this method is efficient, the numerical example confirms a good conditioning and computational efficiency.","PeriodicalId":133767,"journal":{"name":"2017 International Conference on Control, Automation and Diagnosis (ICCAD)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Iterative and recursive subspace algorithms for identification of Hammerstein model with SH nonlinearity\",\"authors\":\"B. Aissaoui, M. Soltani, A. Chaari\",\"doi\":\"10.1109/CADIAG.2017.8075684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new method to estimate the parameters of both blocks, linear and nonlinear using an iterative and recursive subspace approaches. More importantly, in an attempt to show the extent to which this method is efficient, the numerical example confirms a good conditioning and computational efficiency.\",\"PeriodicalId\":133767,\"journal\":{\"name\":\"2017 International Conference on Control, Automation and Diagnosis (ICCAD)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Control, Automation and Diagnosis (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CADIAG.2017.8075684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Control, Automation and Diagnosis (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CADIAG.2017.8075684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Iterative and recursive subspace algorithms for identification of Hammerstein model with SH nonlinearity
This paper proposes a new method to estimate the parameters of both blocks, linear and nonlinear using an iterative and recursive subspace approaches. More importantly, in an attempt to show the extent to which this method is efficient, the numerical example confirms a good conditioning and computational efficiency.