{"title":"一种新的自回归噪声模型CFAR匹配检测器","authors":"V. Golikov, O. Lebedeva","doi":"10.1109/ICEEE.2006.251911","DOIUrl":null,"url":null,"abstract":"The constant false alarm rate (CFAR) matched detector (CFAR MD) is the uniformly most-powerful-invariant test and the generalized likelihood ratio test (GLRT) for detecting a target signal in noise whose covariance structure is known but whose level is unknown. The CFAR adaptive subspace detector (CFAR MD) was proposed for detecting a target signal in noise whose covariance structure and level are both unknown. In this paper, we use the theory of GLRTs to adapt the no-adaptive CFAR MDs to unknown noise covariance matrices with autoregressive (AR) structure. In this situation, we proposed a new CFAR NCFMD whose structure does not depend on noise covariance matrix and level and its performance penalty is small","PeriodicalId":125310,"journal":{"name":"2006 3rd International Conference on Electrical and Electronics Engineering","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New CFAR Matched Detector for an Autoregressive Model of Noise\",\"authors\":\"V. Golikov, O. Lebedeva\",\"doi\":\"10.1109/ICEEE.2006.251911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The constant false alarm rate (CFAR) matched detector (CFAR MD) is the uniformly most-powerful-invariant test and the generalized likelihood ratio test (GLRT) for detecting a target signal in noise whose covariance structure is known but whose level is unknown. The CFAR adaptive subspace detector (CFAR MD) was proposed for detecting a target signal in noise whose covariance structure and level are both unknown. In this paper, we use the theory of GLRTs to adapt the no-adaptive CFAR MDs to unknown noise covariance matrices with autoregressive (AR) structure. In this situation, we proposed a new CFAR NCFMD whose structure does not depend on noise covariance matrix and level and its performance penalty is small\",\"PeriodicalId\":125310,\"journal\":{\"name\":\"2006 3rd International Conference on Electrical and Electronics Engineering\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 3rd International Conference on Electrical and Electronics Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEEE.2006.251911\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 3rd International Conference on Electrical and Electronics Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE.2006.251911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A New CFAR Matched Detector for an Autoregressive Model of Noise
The constant false alarm rate (CFAR) matched detector (CFAR MD) is the uniformly most-powerful-invariant test and the generalized likelihood ratio test (GLRT) for detecting a target signal in noise whose covariance structure is known but whose level is unknown. The CFAR adaptive subspace detector (CFAR MD) was proposed for detecting a target signal in noise whose covariance structure and level are both unknown. In this paper, we use the theory of GLRTs to adapt the no-adaptive CFAR MDs to unknown noise covariance matrices with autoregressive (AR) structure. In this situation, we proposed a new CFAR NCFMD whose structure does not depend on noise covariance matrix and level and its performance penalty is small