K. Lee, Shuyu Bao, G. Y. Chong, Yew Heng Tan, E. Fitzgerald, C. S. Tan
{"title":"通过无缓冲外延和键合制备具有提高螺纹位错密度(TDD)的绝缘子上锗(GOI)","authors":"K. Lee, Shuyu Bao, G. Y. Chong, Yew Heng Tan, E. Fitzgerald, C. S. Tan","doi":"10.1109/ISTDM.2014.6874660","DOIUrl":null,"url":null,"abstract":"The GOI substrate is fabricated through buffer-less epitaxy (the growth of Ge on Si), bonding and layer transfer. The misfit dislocations which are previously “buried” along the Ge/Si interface are now accessible from the top surface. Through TDD reduction method, the TDD is reduced by at least two orders of magnitude. Hence, a Ge epilayer with lower TDD can be realized and useful for subsequent III-V integration and device fabrication.","PeriodicalId":371483,"journal":{"name":"2014 7th International Silicon-Germanium Technology and Device Meeting (ISTDM)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fabrication of germanium-on-insulator (GOI) with improved threading dislocation density (TDD) via buffer-less epitaxy and bonding\",\"authors\":\"K. Lee, Shuyu Bao, G. Y. Chong, Yew Heng Tan, E. Fitzgerald, C. S. Tan\",\"doi\":\"10.1109/ISTDM.2014.6874660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The GOI substrate is fabricated through buffer-less epitaxy (the growth of Ge on Si), bonding and layer transfer. The misfit dislocations which are previously “buried” along the Ge/Si interface are now accessible from the top surface. Through TDD reduction method, the TDD is reduced by at least two orders of magnitude. Hence, a Ge epilayer with lower TDD can be realized and useful for subsequent III-V integration and device fabrication.\",\"PeriodicalId\":371483,\"journal\":{\"name\":\"2014 7th International Silicon-Germanium Technology and Device Meeting (ISTDM)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 7th International Silicon-Germanium Technology and Device Meeting (ISTDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISTDM.2014.6874660\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 7th International Silicon-Germanium Technology and Device Meeting (ISTDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISTDM.2014.6874660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fabrication of germanium-on-insulator (GOI) with improved threading dislocation density (TDD) via buffer-less epitaxy and bonding
The GOI substrate is fabricated through buffer-less epitaxy (the growth of Ge on Si), bonding and layer transfer. The misfit dislocations which are previously “buried” along the Ge/Si interface are now accessible from the top surface. Through TDD reduction method, the TDD is reduced by at least two orders of magnitude. Hence, a Ge epilayer with lower TDD can be realized and useful for subsequent III-V integration and device fabrication.