基于 QuIDD 的高性能量子电路仿真

George F. Viamontes, I. Markov, J. Hayes
{"title":"基于 QuIDD 的高性能量子电路仿真","authors":"George F. Viamontes, I. Markov, J. Hayes","doi":"10.1109/DATE.2004.1269084","DOIUrl":null,"url":null,"abstract":"Simulating quantum computation on a classical computer is a difficult problem. The matrices representing quantum gates, and vectors modeling qubit states grow exponentially with the number of qubits. It has been shown experimentally that the QuIDD (Quantum Information Decision Diagram) datastructure greatly facilitates simulations using memory and runtime that are polynomial in the number of qubits. In this paper, we present a complexity analysis which formally describes this class of matrices and vectors. We also present an improved implementation of QuIDDs which can simulate Grover's algorithm for quantum search with the asymptotic runtime complexity of an ideal quantum computer up to negligible overhead.","PeriodicalId":335658,"journal":{"name":"Proceedings Design, Automation and Test in Europe Conference and Exhibition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"High-performance QuIDD-based simulation of quantum circuits\",\"authors\":\"George F. Viamontes, I. Markov, J. Hayes\",\"doi\":\"10.1109/DATE.2004.1269084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simulating quantum computation on a classical computer is a difficult problem. The matrices representing quantum gates, and vectors modeling qubit states grow exponentially with the number of qubits. It has been shown experimentally that the QuIDD (Quantum Information Decision Diagram) datastructure greatly facilitates simulations using memory and runtime that are polynomial in the number of qubits. In this paper, we present a complexity analysis which formally describes this class of matrices and vectors. We also present an improved implementation of QuIDDs which can simulate Grover's algorithm for quantum search with the asymptotic runtime complexity of an ideal quantum computer up to negligible overhead.\",\"PeriodicalId\":335658,\"journal\":{\"name\":\"Proceedings Design, Automation and Test in Europe Conference and Exhibition\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Design, Automation and Test in Europe Conference and Exhibition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DATE.2004.1269084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Design, Automation and Test in Europe Conference and Exhibition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DATE.2004.1269084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

摘要

在经典计算机上模拟量子计算是一个难题。代表量子门的矩阵和模拟量子比特状态的向量会随着量子比特数量的增加而呈指数增长。实验表明,QuIDD(量子信息判定图)数据结构极大地促进了模拟,其内存和运行时间均为量子比特数的多项式。在本文中,我们提出了一种复杂性分析,正式描述了这一类矩阵和向量。我们还介绍了 QuIDDs 的改进实现,它可以模拟格罗弗量子搜索算法,其渐近运行时间复杂度与理想量子计算机相当,开销可忽略不计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-performance QuIDD-based simulation of quantum circuits
Simulating quantum computation on a classical computer is a difficult problem. The matrices representing quantum gates, and vectors modeling qubit states grow exponentially with the number of qubits. It has been shown experimentally that the QuIDD (Quantum Information Decision Diagram) datastructure greatly facilitates simulations using memory and runtime that are polynomial in the number of qubits. In this paper, we present a complexity analysis which formally describes this class of matrices and vectors. We also present an improved implementation of QuIDDs which can simulate Grover's algorithm for quantum search with the asymptotic runtime complexity of an ideal quantum computer up to negligible overhead.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信