{"title":"一个高效和有效的分析placer为fpga","authors":"Tzu-Hen Lin, Pritha Banerjee, Yao-Wen Chang","doi":"10.1145/2463209.2488746","DOIUrl":null,"url":null,"abstract":"The increasing design complexity of modern circuits has made traditional FPGA placement techniques not efficient anymore. To improve the scalability, commercial FPGA placement tools have started migrating to analytical placement. In this paper, we propose the first academic multilevel timing-and-wirelength-driven analytical placement algorithm for FPGAs. Our proposed algorithm consists of (1) multilevel timing-and-wirelength-driven analytical global placement with the novel block alignment consideration, (2) partitioning-based legalization, (3) wirelength-driven block matching-based detailed placement, and (4) timing-driven simulated-annealing-based detailed placement. Experimental results show that our proposed approach can achieve 6.91 × speedup on average with 7% smaller critical path delay and 1% shorter routed wirelength compared to VPR, the well-known, state-of-the-art academic simulated-annealing-based FPGA placer.","PeriodicalId":320207,"journal":{"name":"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"An efficient and effective analytical placer for FPGAs\",\"authors\":\"Tzu-Hen Lin, Pritha Banerjee, Yao-Wen Chang\",\"doi\":\"10.1145/2463209.2488746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing design complexity of modern circuits has made traditional FPGA placement techniques not efficient anymore. To improve the scalability, commercial FPGA placement tools have started migrating to analytical placement. In this paper, we propose the first academic multilevel timing-and-wirelength-driven analytical placement algorithm for FPGAs. Our proposed algorithm consists of (1) multilevel timing-and-wirelength-driven analytical global placement with the novel block alignment consideration, (2) partitioning-based legalization, (3) wirelength-driven block matching-based detailed placement, and (4) timing-driven simulated-annealing-based detailed placement. Experimental results show that our proposed approach can achieve 6.91 × speedup on average with 7% smaller critical path delay and 1% shorter routed wirelength compared to VPR, the well-known, state-of-the-art academic simulated-annealing-based FPGA placer.\",\"PeriodicalId\":320207,\"journal\":{\"name\":\"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2463209.2488746\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2463209.2488746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An efficient and effective analytical placer for FPGAs
The increasing design complexity of modern circuits has made traditional FPGA placement techniques not efficient anymore. To improve the scalability, commercial FPGA placement tools have started migrating to analytical placement. In this paper, we propose the first academic multilevel timing-and-wirelength-driven analytical placement algorithm for FPGAs. Our proposed algorithm consists of (1) multilevel timing-and-wirelength-driven analytical global placement with the novel block alignment consideration, (2) partitioning-based legalization, (3) wirelength-driven block matching-based detailed placement, and (4) timing-driven simulated-annealing-based detailed placement. Experimental results show that our proposed approach can achieve 6.91 × speedup on average with 7% smaller critical path delay and 1% shorter routed wirelength compared to VPR, the well-known, state-of-the-art academic simulated-annealing-based FPGA placer.