一个高效和有效的分析placer为fpga

Tzu-Hen Lin, Pritha Banerjee, Yao-Wen Chang
{"title":"一个高效和有效的分析placer为fpga","authors":"Tzu-Hen Lin, Pritha Banerjee, Yao-Wen Chang","doi":"10.1145/2463209.2488746","DOIUrl":null,"url":null,"abstract":"The increasing design complexity of modern circuits has made traditional FPGA placement techniques not efficient anymore. To improve the scalability, commercial FPGA placement tools have started migrating to analytical placement. In this paper, we propose the first academic multilevel timing-and-wirelength-driven analytical placement algorithm for FPGAs. Our proposed algorithm consists of (1) multilevel timing-and-wirelength-driven analytical global placement with the novel block alignment consideration, (2) partitioning-based legalization, (3) wirelength-driven block matching-based detailed placement, and (4) timing-driven simulated-annealing-based detailed placement. Experimental results show that our proposed approach can achieve 6.91 × speedup on average with 7% smaller critical path delay and 1% shorter routed wirelength compared to VPR, the well-known, state-of-the-art academic simulated-annealing-based FPGA placer.","PeriodicalId":320207,"journal":{"name":"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"An efficient and effective analytical placer for FPGAs\",\"authors\":\"Tzu-Hen Lin, Pritha Banerjee, Yao-Wen Chang\",\"doi\":\"10.1145/2463209.2488746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing design complexity of modern circuits has made traditional FPGA placement techniques not efficient anymore. To improve the scalability, commercial FPGA placement tools have started migrating to analytical placement. In this paper, we propose the first academic multilevel timing-and-wirelength-driven analytical placement algorithm for FPGAs. Our proposed algorithm consists of (1) multilevel timing-and-wirelength-driven analytical global placement with the novel block alignment consideration, (2) partitioning-based legalization, (3) wirelength-driven block matching-based detailed placement, and (4) timing-driven simulated-annealing-based detailed placement. Experimental results show that our proposed approach can achieve 6.91 × speedup on average with 7% smaller critical path delay and 1% shorter routed wirelength compared to VPR, the well-known, state-of-the-art academic simulated-annealing-based FPGA placer.\",\"PeriodicalId\":320207,\"journal\":{\"name\":\"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2463209.2488746\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2463209.2488746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

摘要

随着现代电路设计复杂性的不断增加,传统的FPGA放置技术已经不再有效。为了提高可扩展性,商业FPGA放置工具已经开始迁移到分析放置。在本文中,我们提出了第一个学术界的fpga多电平时序和线长驱动的分析布局算法。我们提出的算法包括:(1)考虑新型块对齐的多级时间和长度驱动的分析全局布局,(2)基于分区的合法化,(3)基于长度驱动的块匹配的详细布局,以及(4)基于时间驱动的模拟退火的详细布局。实验结果表明,与著名的、最先进的基于仿真退火的FPGA放矿器VPR相比,我们提出的方法平均可以实现6.91倍的加速,关键路径延迟减少7%,路由长度缩短1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An efficient and effective analytical placer for FPGAs
The increasing design complexity of modern circuits has made traditional FPGA placement techniques not efficient anymore. To improve the scalability, commercial FPGA placement tools have started migrating to analytical placement. In this paper, we propose the first academic multilevel timing-and-wirelength-driven analytical placement algorithm for FPGAs. Our proposed algorithm consists of (1) multilevel timing-and-wirelength-driven analytical global placement with the novel block alignment consideration, (2) partitioning-based legalization, (3) wirelength-driven block matching-based detailed placement, and (4) timing-driven simulated-annealing-based detailed placement. Experimental results show that our proposed approach can achieve 6.91 × speedup on average with 7% smaller critical path delay and 1% shorter routed wirelength compared to VPR, the well-known, state-of-the-art academic simulated-annealing-based FPGA placer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信