人体声音的区域信号识别

Osman Balli, Y. Kutlu
{"title":"人体声音的区域信号识别","authors":"Osman Balli, Y. Kutlu","doi":"10.54856/jiswa.202112187","DOIUrl":null,"url":null,"abstract":"One of the most important signals in the field of biomedicine is audio signals. Sound signals obtained from the body give us information about the general condition of the body. However, the detection of different sounds when recording audio signals belonging to the body or listening to them by doctors makes it difficult to diagnose the disease from these signals. In addition to isolating these sounds from the external environment, it is also necessary to separate their sounds from different parts of the body during the analysis. Separation of heart, lung and abdominal sounds will facilitate digital analysis, in particular. In this study, a dataset was created from the lungs, heart and abdominal sounds. MFCC (Mel Frekans Cepstrum Coefficient) coefficient data were obtained. The obtained coefficients were trained in the CNN (Convolution Neural Network) model. The purpose of this study is to classify audio signals. With this classification, a control system can be created. In this way, erroneous recordings that may occur when recording physicians' body voices will be prevented. When looking at the results, the educational success is about 98% and the test success is about 85%.","PeriodicalId":112412,"journal":{"name":"Journal of Intelligent Systems with Applications","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Regional Signal Recognition of Body Sounds\",\"authors\":\"Osman Balli, Y. Kutlu\",\"doi\":\"10.54856/jiswa.202112187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the most important signals in the field of biomedicine is audio signals. Sound signals obtained from the body give us information about the general condition of the body. However, the detection of different sounds when recording audio signals belonging to the body or listening to them by doctors makes it difficult to diagnose the disease from these signals. In addition to isolating these sounds from the external environment, it is also necessary to separate their sounds from different parts of the body during the analysis. Separation of heart, lung and abdominal sounds will facilitate digital analysis, in particular. In this study, a dataset was created from the lungs, heart and abdominal sounds. MFCC (Mel Frekans Cepstrum Coefficient) coefficient data were obtained. The obtained coefficients were trained in the CNN (Convolution Neural Network) model. The purpose of this study is to classify audio signals. With this classification, a control system can be created. In this way, erroneous recordings that may occur when recording physicians' body voices will be prevented. When looking at the results, the educational success is about 98% and the test success is about 85%.\",\"PeriodicalId\":112412,\"journal\":{\"name\":\"Journal of Intelligent Systems with Applications\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Systems with Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54856/jiswa.202112187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Systems with Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54856/jiswa.202112187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

音频信号是生物医学领域中最重要的信号之一。从身体获得的声音信号给我们提供了关于身体一般状况的信息。但是,在记录属于身体的声音信号或由医生聆听时,会发现不同的声音,因此很难根据这些信号诊断疾病。除了将这些声音与外界环境隔离之外,在分析时还需要将它们的声音与身体的不同部位分开。分离心音、肺音和腹部音尤其有助于数字分析。在这项研究中,从肺部、心脏和腹部的声音中创建了一个数据集。MFCC (Mel Frekans倒谱系数)系数数据。得到的系数在CNN(卷积神经网络)模型中进行训练。本研究的目的是对音频信号进行分类。有了这种分类,就可以创建一个控制系统。这样就可以避免在记录医生的身体声音时可能出现的错误记录。从结果来看,教育成功率约为98%,考试成功率约为85%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regional Signal Recognition of Body Sounds
One of the most important signals in the field of biomedicine is audio signals. Sound signals obtained from the body give us information about the general condition of the body. However, the detection of different sounds when recording audio signals belonging to the body or listening to them by doctors makes it difficult to diagnose the disease from these signals. In addition to isolating these sounds from the external environment, it is also necessary to separate their sounds from different parts of the body during the analysis. Separation of heart, lung and abdominal sounds will facilitate digital analysis, in particular. In this study, a dataset was created from the lungs, heart and abdominal sounds. MFCC (Mel Frekans Cepstrum Coefficient) coefficient data were obtained. The obtained coefficients were trained in the CNN (Convolution Neural Network) model. The purpose of this study is to classify audio signals. With this classification, a control system can be created. In this way, erroneous recordings that may occur when recording physicians' body voices will be prevented. When looking at the results, the educational success is about 98% and the test success is about 85%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信