基于学习的细胞感知顾客退货缺陷诊断

S. Mhamdi, P. Girard, A. Virazel, A. Bosio, A. Ladhar
{"title":"基于学习的细胞感知顾客退货缺陷诊断","authors":"S. Mhamdi, P. Girard, A. Virazel, A. Bosio, A. Ladhar","doi":"10.1109/ETS48528.2020.9131601","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new framework for cell-aware defect diagnosis of customer returns based on supervised learning. The proposed method comprehensively deals with static and dynamic defects that may occur in real circuits. A Naive Bayes classifier is used to precisely identify defect candidates. Results obtained on benchmark circuits, and comparison with a commercial cell-aware diagnosis tool, demonstrate the efficiency of the proposed approach in terms of accuracy and resolution.","PeriodicalId":267309,"journal":{"name":"2020 IEEE European Test Symposium (ETS)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Learning-Based Cell-Aware Defect Diagnosis of Customer Returns\",\"authors\":\"S. Mhamdi, P. Girard, A. Virazel, A. Bosio, A. Ladhar\",\"doi\":\"10.1109/ETS48528.2020.9131601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new framework for cell-aware defect diagnosis of customer returns based on supervised learning. The proposed method comprehensively deals with static and dynamic defects that may occur in real circuits. A Naive Bayes classifier is used to precisely identify defect candidates. Results obtained on benchmark circuits, and comparison with a commercial cell-aware diagnosis tool, demonstrate the efficiency of the proposed approach in terms of accuracy and resolution.\",\"PeriodicalId\":267309,\"journal\":{\"name\":\"2020 IEEE European Test Symposium (ETS)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE European Test Symposium (ETS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETS48528.2020.9131601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE European Test Symposium (ETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETS48528.2020.9131601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于监督学习的顾客退货细胞感知缺陷诊断框架。该方法综合处理了实际电路中可能出现的静态缺陷和动态缺陷。使用朴素贝叶斯分类器精确识别候选缺陷。在基准电路上获得的结果,以及与商业细胞感知诊断工具的比较,证明了所提出的方法在准确性和分辨率方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning-Based Cell-Aware Defect Diagnosis of Customer Returns
In this paper, we propose a new framework for cell-aware defect diagnosis of customer returns based on supervised learning. The proposed method comprehensively deals with static and dynamic defects that may occur in real circuits. A Naive Bayes classifier is used to precisely identify defect candidates. Results obtained on benchmark circuits, and comparison with a commercial cell-aware diagnosis tool, demonstrate the efficiency of the proposed approach in terms of accuracy and resolution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信