Sb自通量法制备CoSb3化合物的合成条件优化

T. Souma, M. Ohtaki
{"title":"Sb自通量法制备CoSb3化合物的合成条件优化","authors":"T. Souma, M. Ohtaki","doi":"10.1109/ICT.2006.331385","DOIUrl":null,"url":null,"abstract":"CoSb3 bulk materials were successfully prepared by Sb self-flux technique, and the synthesis conditions were widely investigated to obtain the high purity compounds utilizing a quantitative powder XRD study with the Rietveld analysis applying a multi-phase-fitting condition. The reaction temperature range for the Sb self-flux technique was extended up to 1123 K to promote the reaction in the Co-Sb system. The relation between the reaction temperature and the chemical composition is discussed to optimize the preparation conditions in the Sb self-flux technique","PeriodicalId":346555,"journal":{"name":"2006 25th International Conference on Thermoelectrics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of synthesis conditions for CoSb3 compounds prepared by Sb self-flux method\",\"authors\":\"T. Souma, M. Ohtaki\",\"doi\":\"10.1109/ICT.2006.331385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CoSb3 bulk materials were successfully prepared by Sb self-flux technique, and the synthesis conditions were widely investigated to obtain the high purity compounds utilizing a quantitative powder XRD study with the Rietveld analysis applying a multi-phase-fitting condition. The reaction temperature range for the Sb self-flux technique was extended up to 1123 K to promote the reaction in the Co-Sb system. The relation between the reaction temperature and the chemical composition is discussed to optimize the preparation conditions in the Sb self-flux technique\",\"PeriodicalId\":346555,\"journal\":{\"name\":\"2006 25th International Conference on Thermoelectrics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 25th International Conference on Thermoelectrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICT.2006.331385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 25th International Conference on Thermoelectrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICT.2006.331385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用Sb自通量法成功制备了CoSb3块状材料,并采用多相拟合条件下的Rietveld分析和定量粉末XRD研究了合成条件,获得了高纯度化合物。将Sb自通量技术的反应温度范围扩大到1123 K,以促进Co-Sb体系中的反应。讨论了反应温度与化学成分的关系,优化了锑自通量法的制备条件
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of synthesis conditions for CoSb3 compounds prepared by Sb self-flux method
CoSb3 bulk materials were successfully prepared by Sb self-flux technique, and the synthesis conditions were widely investigated to obtain the high purity compounds utilizing a quantitative powder XRD study with the Rietveld analysis applying a multi-phase-fitting condition. The reaction temperature range for the Sb self-flux technique was extended up to 1123 K to promote the reaction in the Co-Sb system. The relation between the reaction temperature and the chemical composition is discussed to optimize the preparation conditions in the Sb self-flux technique
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信