使用GaAs集成电路代工服务制造的特定应用oeic

C. Fonstad, K. V. Shenoy
{"title":"使用GaAs集成电路代工服务制造的特定应用oeic","authors":"C. Fonstad, K. V. Shenoy","doi":"10.1109/LEOSST.1994.700420","DOIUrl":null,"url":null,"abstract":"A novel epitaxy-on-electronics process for fabricating optoelectronic integrated circuits (OEICs) with high performance optoelectronic devices monolithically integrated with VLSI density and complexity GaAs electronic circuitry has been proposed, demonstrated, and continues to be developed by a research team1 at MIT associated with the ARPA-funded National Center for Integrated Photonics Technology (NCIPT)' and working in collaboration with other researchers at Caltech3, GTE Labs Inc.4, MIT Lincoln Laboratory5, Motorola, Inc.6, and Vitesse Semiconductor Corp.7. Building on the existing commercial gallium arsenide integrated circuit technology base, this epi-on-electronics approach does not require t'he development of a VLSI electronics technology, unlike the more common epitaxy-first approach. It thus promises to provide a direct, immediate route to the realization of large-scale application-specific OEICs for a variety of applications. Recent work by researchers at MIT has shown that gallium arsenide MESFETs fabricated using commercial VLSI processes incorporating refractory metal ohmic contacts and gates, and standard (Si IC-like) back-end multi-level dielectric and interconnect technology, are not adversely effected by several hours at elevated temperatures*. This means that these devices will survive the molecular beam epitaxy growth sequence for many 111-V optoelectronic device heterostructures. In fact, these MESFETs still function after being annealed at as high as 700\"C, but as Figure 1 illustrates, the room temperature characteristics change for anneals above 500°C. Thus if established design rules and simulation tools are to be used, the bulk of the epitaxial growth run must be conducted at 500°C or less.","PeriodicalId":379594,"journal":{"name":"Proceedings of IEE/LEOS Summer Topical Meetings: Integrated Optoelectronics","volume":"205 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Application Specific OEICs Fabricated Using GaAs IC Foundry Services\",\"authors\":\"C. Fonstad, K. V. Shenoy\",\"doi\":\"10.1109/LEOSST.1994.700420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel epitaxy-on-electronics process for fabricating optoelectronic integrated circuits (OEICs) with high performance optoelectronic devices monolithically integrated with VLSI density and complexity GaAs electronic circuitry has been proposed, demonstrated, and continues to be developed by a research team1 at MIT associated with the ARPA-funded National Center for Integrated Photonics Technology (NCIPT)' and working in collaboration with other researchers at Caltech3, GTE Labs Inc.4, MIT Lincoln Laboratory5, Motorola, Inc.6, and Vitesse Semiconductor Corp.7. Building on the existing commercial gallium arsenide integrated circuit technology base, this epi-on-electronics approach does not require t'he development of a VLSI electronics technology, unlike the more common epitaxy-first approach. It thus promises to provide a direct, immediate route to the realization of large-scale application-specific OEICs for a variety of applications. Recent work by researchers at MIT has shown that gallium arsenide MESFETs fabricated using commercial VLSI processes incorporating refractory metal ohmic contacts and gates, and standard (Si IC-like) back-end multi-level dielectric and interconnect technology, are not adversely effected by several hours at elevated temperatures*. This means that these devices will survive the molecular beam epitaxy growth sequence for many 111-V optoelectronic device heterostructures. In fact, these MESFETs still function after being annealed at as high as 700\\\"C, but as Figure 1 illustrates, the room temperature characteristics change for anneals above 500°C. Thus if established design rules and simulation tools are to be used, the bulk of the epitaxial growth run must be conducted at 500°C or less.\",\"PeriodicalId\":379594,\"journal\":{\"name\":\"Proceedings of IEE/LEOS Summer Topical Meetings: Integrated Optoelectronics\",\"volume\":\"205 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEE/LEOS Summer Topical Meetings: Integrated Optoelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LEOSST.1994.700420\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEE/LEOS Summer Topical Meetings: Integrated Optoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LEOSST.1994.700420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

由美国国防部高级研究计划局资助的国家集成光子学技术中心(NCIPT)与加州理工学院(caltech)、GTE实验室(GTE Labs)的其他研究人员合作,麻省理工学院(MIT)的一个研究小组提出了一种新型的电子外延工艺,用于制造具有VLSI密度和复杂GaAs电子电路的高性能光电子器件单片集成光电子集成电路(OEICs)。麻省理工学院林肯实验室、摩托罗拉公司和维特斯半导体公司。建立在现有的商业砷化镓集成电路技术基础上,这种外延电子方法不需要开发VLSI电子技术,不像更常见的外延优先方法。因此,它有望为实现各种应用程序的大规模特定于应用程序的oeic提供直接、即时的途径。麻省理工学院的研究人员最近的工作表明,使用商用超大规模集成电路工艺制造的砷化镓mesfet,结合难熔金属欧姆触点和栅极,以及标准(类硅集成电路)后端多级介电和互连技术,在高温下几个小时不会受到不利影响*。这意味着这些器件将在许多111-V光电子器件异质结构的分子束外延生长序列中存活下来。事实上,这些mesfet在高达700°C退火后仍然可以工作,但如图1所示,在500°C以上退火时,室温特性发生了变化。因此,如果要使用既定的设计规则和仿真工具,则大部分外延生长运行必须在500°C或更低的温度下进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application Specific OEICs Fabricated Using GaAs IC Foundry Services
A novel epitaxy-on-electronics process for fabricating optoelectronic integrated circuits (OEICs) with high performance optoelectronic devices monolithically integrated with VLSI density and complexity GaAs electronic circuitry has been proposed, demonstrated, and continues to be developed by a research team1 at MIT associated with the ARPA-funded National Center for Integrated Photonics Technology (NCIPT)' and working in collaboration with other researchers at Caltech3, GTE Labs Inc.4, MIT Lincoln Laboratory5, Motorola, Inc.6, and Vitesse Semiconductor Corp.7. Building on the existing commercial gallium arsenide integrated circuit technology base, this epi-on-electronics approach does not require t'he development of a VLSI electronics technology, unlike the more common epitaxy-first approach. It thus promises to provide a direct, immediate route to the realization of large-scale application-specific OEICs for a variety of applications. Recent work by researchers at MIT has shown that gallium arsenide MESFETs fabricated using commercial VLSI processes incorporating refractory metal ohmic contacts and gates, and standard (Si IC-like) back-end multi-level dielectric and interconnect technology, are not adversely effected by several hours at elevated temperatures*. This means that these devices will survive the molecular beam epitaxy growth sequence for many 111-V optoelectronic device heterostructures. In fact, these MESFETs still function after being annealed at as high as 700"C, but as Figure 1 illustrates, the room temperature characteristics change for anneals above 500°C. Thus if established design rules and simulation tools are to be used, the bulk of the epitaxial growth run must be conducted at 500°C or less.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信