Meilin Zhu, U. Obahiagbon, K. Anderson, J. Christen
{"title":"高度敏感的基于荧光的横向流动平台,用于即时检测血浆中的生物标志物","authors":"Meilin Zhu, U. Obahiagbon, K. Anderson, J. Christen","doi":"10.1109/HIC.2017.8227631","DOIUrl":null,"url":null,"abstract":"Point-of-Care (PoC) diagnostic devices, such as lateral flow tests, are often used in low and middle-income countries (LMIC) for low-cost disease detection. Most commercial lateral flow tests use colorimetric detection on a nitrocellulose substrate. In this paper, we present a multistep, fluorescence-based assay detection system, which can detect antibodies in plasma to recombinant protein. Fluorescence-based detection allows us to achieve higher sensitivity, while a nitrocellulose substrate enables fluid handling, high protein immobilization, rapid detection time, and affordability. As a proof-of-concept for detection of disease-specific biomarkers in plasma, we demonstrate the detection of antibodies in plasma to Epstein-Barr nuclear antigen-1 (EBNA-1) recombinant protein and to human papillomavirus (HPV) 16 E7 recombinant protein. We show that our detection system is able to detect EBNA-1-specific antibodies at a 1:10,000 plasma dilution and HPV 16 E7-specific antibodies at a 1:5,000 plasma dilution, indicating high sensitivity. This platform is a low-cost device that can detect fluorescence from labeled biomarkers on a lateral flow assay. Ultimately, we aim to adapt this system to detect HPV 16 and 18 biomarkers for cervical cancer screening in LMICs.","PeriodicalId":120815,"journal":{"name":"2017 IEEE Healthcare Innovations and Point of Care Technologies (HI-POCT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Highly sensitive fluorescence-based lateral flow platform for point-of-care detection of biomarkers in plasma\",\"authors\":\"Meilin Zhu, U. Obahiagbon, K. Anderson, J. Christen\",\"doi\":\"10.1109/HIC.2017.8227631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Point-of-Care (PoC) diagnostic devices, such as lateral flow tests, are often used in low and middle-income countries (LMIC) for low-cost disease detection. Most commercial lateral flow tests use colorimetric detection on a nitrocellulose substrate. In this paper, we present a multistep, fluorescence-based assay detection system, which can detect antibodies in plasma to recombinant protein. Fluorescence-based detection allows us to achieve higher sensitivity, while a nitrocellulose substrate enables fluid handling, high protein immobilization, rapid detection time, and affordability. As a proof-of-concept for detection of disease-specific biomarkers in plasma, we demonstrate the detection of antibodies in plasma to Epstein-Barr nuclear antigen-1 (EBNA-1) recombinant protein and to human papillomavirus (HPV) 16 E7 recombinant protein. We show that our detection system is able to detect EBNA-1-specific antibodies at a 1:10,000 plasma dilution and HPV 16 E7-specific antibodies at a 1:5,000 plasma dilution, indicating high sensitivity. This platform is a low-cost device that can detect fluorescence from labeled biomarkers on a lateral flow assay. Ultimately, we aim to adapt this system to detect HPV 16 and 18 biomarkers for cervical cancer screening in LMICs.\",\"PeriodicalId\":120815,\"journal\":{\"name\":\"2017 IEEE Healthcare Innovations and Point of Care Technologies (HI-POCT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Healthcare Innovations and Point of Care Technologies (HI-POCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HIC.2017.8227631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Healthcare Innovations and Point of Care Technologies (HI-POCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIC.2017.8227631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Highly sensitive fluorescence-based lateral flow platform for point-of-care detection of biomarkers in plasma
Point-of-Care (PoC) diagnostic devices, such as lateral flow tests, are often used in low and middle-income countries (LMIC) for low-cost disease detection. Most commercial lateral flow tests use colorimetric detection on a nitrocellulose substrate. In this paper, we present a multistep, fluorescence-based assay detection system, which can detect antibodies in plasma to recombinant protein. Fluorescence-based detection allows us to achieve higher sensitivity, while a nitrocellulose substrate enables fluid handling, high protein immobilization, rapid detection time, and affordability. As a proof-of-concept for detection of disease-specific biomarkers in plasma, we demonstrate the detection of antibodies in plasma to Epstein-Barr nuclear antigen-1 (EBNA-1) recombinant protein and to human papillomavirus (HPV) 16 E7 recombinant protein. We show that our detection system is able to detect EBNA-1-specific antibodies at a 1:10,000 plasma dilution and HPV 16 E7-specific antibodies at a 1:5,000 plasma dilution, indicating high sensitivity. This platform is a low-cost device that can detect fluorescence from labeled biomarkers on a lateral flow assay. Ultimately, we aim to adapt this system to detect HPV 16 and 18 biomarkers for cervical cancer screening in LMICs.