{"title":"耦合振荡器系统:基于谐波平衡的振荡器模型的高效仿真","authors":"A. Suárez, F. Ramírez, S. Sancho","doi":"10.1109/NEMO.2014.6995676","DOIUrl":null,"url":null,"abstract":"A two-level simulation methodology for coupled-oscillator systems is presented. The inner level corresponds to the harmonic-balance analysis of the elementary oscillator in free-running regime, so as to obtain a one-port reduced-order model. The outer level corresponds to the analysis of the coupled system, deriving a formulation that explicitly relates the oscillation-frequency deviation and the amplitude and phase distributions to magnitudes characterizing the coupling network and oscillator elements. A stability analysis based on this formulation is also carried out obtaining a mathematical condition that determines the stable phase-shift interval. The formulation provides valuable insight into the system behavior and allows the derivation of realistic criteria for an optimum coupled-system performance. The two-level analysis has been extended to injection-locked systems, which enables an investigation of the impact of the number of oscillator elements and relative position of the injection signal on the locking bandwidth.","PeriodicalId":273349,"journal":{"name":"2014 International Conference on Numerical Electromagnetic Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Coupled-oscillator systems: Efficient simulation with harmonic-balance based oscillator models\",\"authors\":\"A. Suárez, F. Ramírez, S. Sancho\",\"doi\":\"10.1109/NEMO.2014.6995676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A two-level simulation methodology for coupled-oscillator systems is presented. The inner level corresponds to the harmonic-balance analysis of the elementary oscillator in free-running regime, so as to obtain a one-port reduced-order model. The outer level corresponds to the analysis of the coupled system, deriving a formulation that explicitly relates the oscillation-frequency deviation and the amplitude and phase distributions to magnitudes characterizing the coupling network and oscillator elements. A stability analysis based on this formulation is also carried out obtaining a mathematical condition that determines the stable phase-shift interval. The formulation provides valuable insight into the system behavior and allows the derivation of realistic criteria for an optimum coupled-system performance. The two-level analysis has been extended to injection-locked systems, which enables an investigation of the impact of the number of oscillator elements and relative position of the injection signal on the locking bandwidth.\",\"PeriodicalId\":273349,\"journal\":{\"name\":\"2014 International Conference on Numerical Electromagnetic Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Numerical Electromagnetic Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEMO.2014.6995676\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Numerical Electromagnetic Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMO.2014.6995676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Coupled-oscillator systems: Efficient simulation with harmonic-balance based oscillator models
A two-level simulation methodology for coupled-oscillator systems is presented. The inner level corresponds to the harmonic-balance analysis of the elementary oscillator in free-running regime, so as to obtain a one-port reduced-order model. The outer level corresponds to the analysis of the coupled system, deriving a formulation that explicitly relates the oscillation-frequency deviation and the amplitude and phase distributions to magnitudes characterizing the coupling network and oscillator elements. A stability analysis based on this formulation is also carried out obtaining a mathematical condition that determines the stable phase-shift interval. The formulation provides valuable insight into the system behavior and allows the derivation of realistic criteria for an optimum coupled-system performance. The two-level analysis has been extended to injection-locked systems, which enables an investigation of the impact of the number of oscillator elements and relative position of the injection signal on the locking bandwidth.