化学-机械抛光后清洗策略的研究

C. Huynh, M. Rutten, R. Cheek, H. Linde
{"title":"化学-机械抛光后清洗策略的研究","authors":"C. Huynh, M. Rutten, R. Cheek, H. Linde","doi":"10.1109/ASMC.1998.731621","DOIUrl":null,"url":null,"abstract":"Chemical-mechanical polishing (CMP) has emerged as the premier technique for achieving both local and global planarization. One of the primary concerns in the use of CMP, however, is the efficient and complete removal of CMP contaminants such as slurry and residual hydrocarbons. This paper discusses the removal of silica-based slurries utilized for polysilicon and oxide CMP processes. The effects of mechanical brush cleaning, chemical treatments, and polish processes on defect density for a 16 Mb memory technology are presented. In addition, the chemical compatibility of polishing slurries with various brush and polishing pad materials is discussed.","PeriodicalId":290016,"journal":{"name":"IEEE/SEMI 1998 IEEE/SEMI Advanced Semiconductor Manufacturing Conference and Workshop (Cat. No.98CH36168)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A study of post-chemical-mechanical polish cleaning strategies\",\"authors\":\"C. Huynh, M. Rutten, R. Cheek, H. Linde\",\"doi\":\"10.1109/ASMC.1998.731621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chemical-mechanical polishing (CMP) has emerged as the premier technique for achieving both local and global planarization. One of the primary concerns in the use of CMP, however, is the efficient and complete removal of CMP contaminants such as slurry and residual hydrocarbons. This paper discusses the removal of silica-based slurries utilized for polysilicon and oxide CMP processes. The effects of mechanical brush cleaning, chemical treatments, and polish processes on defect density for a 16 Mb memory technology are presented. In addition, the chemical compatibility of polishing slurries with various brush and polishing pad materials is discussed.\",\"PeriodicalId\":290016,\"journal\":{\"name\":\"IEEE/SEMI 1998 IEEE/SEMI Advanced Semiconductor Manufacturing Conference and Workshop (Cat. No.98CH36168)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/SEMI 1998 IEEE/SEMI Advanced Semiconductor Manufacturing Conference and Workshop (Cat. No.98CH36168)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASMC.1998.731621\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/SEMI 1998 IEEE/SEMI Advanced Semiconductor Manufacturing Conference and Workshop (Cat. No.98CH36168)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASMC.1998.731621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

化学机械抛光(CMP)已成为实现局部和全局平面化的首要技术。然而,使用CMP的主要问题之一是有效和彻底地去除CMP污染物,如浆液和残余碳氢化合物。本文讨论了用于多晶硅和氧化物CMP工艺的硅基浆料的去除。介绍了机械刷清洗、化学处理和抛光工艺对16mb内存技术缺陷密度的影响。此外,还讨论了抛光液与各种抛光刷和抛光垫材料的化学相容性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A study of post-chemical-mechanical polish cleaning strategies
Chemical-mechanical polishing (CMP) has emerged as the premier technique for achieving both local and global planarization. One of the primary concerns in the use of CMP, however, is the efficient and complete removal of CMP contaminants such as slurry and residual hydrocarbons. This paper discusses the removal of silica-based slurries utilized for polysilicon and oxide CMP processes. The effects of mechanical brush cleaning, chemical treatments, and polish processes on defect density for a 16 Mb memory technology are presented. In addition, the chemical compatibility of polishing slurries with various brush and polishing pad materials is discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信