月球到地球射频传输的多载波波形

T. Rahman, V. Marojevic, C. Sacchi
{"title":"月球到地球射频传输的多载波波形","authors":"T. Rahman, V. Marojevic, C. Sacchi","doi":"10.1109/MetroAeroSpace57412.2023.10190023","DOIUrl":null,"url":null,"abstract":"More than 50 years after the last Apollo mission, the race to the Moon has started again. In the framework of new missions, it will be of paramount importance to establish a reliable communication link between the vehicles (or astronauts) present on the Moon's surface and an Earth station. Alternative choices consider radio-frequency (RF), optical, and hybrid optical-RF solutions. In this paper, we focus on the RF transmission case. Recent works evidenced how diversity is required to face multipath fading issues due to the reflection of electromagnetic rays on the Lunar surface. For this reason, suitable waveforms, which are robust against multi path distortion should be considered. In this work, we propose multicarrier Orthogonal Frequency Division Multiplexing (OFDM), Single-Carrier OFDM (SC-OFDM), and Constant-Envelope OFDM (CE-OFDM). The comparative results will be discussed in order to select the best solution to cope with the various tradeoffs between link performance, spectral efficiency, and computational complexity.","PeriodicalId":153093,"journal":{"name":"2023 IEEE 10th International Workshop on Metrology for AeroSpace (MetroAeroSpace)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multicarrier Waveforms for Moon-to-Earth RF Transmission\",\"authors\":\"T. Rahman, V. Marojevic, C. Sacchi\",\"doi\":\"10.1109/MetroAeroSpace57412.2023.10190023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"More than 50 years after the last Apollo mission, the race to the Moon has started again. In the framework of new missions, it will be of paramount importance to establish a reliable communication link between the vehicles (or astronauts) present on the Moon's surface and an Earth station. Alternative choices consider radio-frequency (RF), optical, and hybrid optical-RF solutions. In this paper, we focus on the RF transmission case. Recent works evidenced how diversity is required to face multipath fading issues due to the reflection of electromagnetic rays on the Lunar surface. For this reason, suitable waveforms, which are robust against multi path distortion should be considered. In this work, we propose multicarrier Orthogonal Frequency Division Multiplexing (OFDM), Single-Carrier OFDM (SC-OFDM), and Constant-Envelope OFDM (CE-OFDM). The comparative results will be discussed in order to select the best solution to cope with the various tradeoffs between link performance, spectral efficiency, and computational complexity.\",\"PeriodicalId\":153093,\"journal\":{\"name\":\"2023 IEEE 10th International Workshop on Metrology for AeroSpace (MetroAeroSpace)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 10th International Workshop on Metrology for AeroSpace (MetroAeroSpace)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MetroAeroSpace57412.2023.10190023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 10th International Workshop on Metrology for AeroSpace (MetroAeroSpace)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MetroAeroSpace57412.2023.10190023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在上一次阿波罗登月任务50多年后,登月竞赛又开始了。在新任务的框架内,在月球表面的载具(或宇航员)和地球站之间建立可靠的通信联系将是至关重要的。其他选择包括射频(RF)、光学和混合光学-RF解决方案。本文主要研究射频传输的情况。最近的研究证明,由于月球表面电磁射线的反射,需要多样性来面对多径衰落问题。因此,应考虑对多径失真具有鲁棒性的合适波形。在这项工作中,我们提出了多载波正交频分复用(OFDM),单载波OFDM (SC-OFDM)和恒包络OFDM (CE-OFDM)。将讨论比较结果,以便选择最佳解决方案,以应对链路性能,频谱效率和计算复杂性之间的各种权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multicarrier Waveforms for Moon-to-Earth RF Transmission
More than 50 years after the last Apollo mission, the race to the Moon has started again. In the framework of new missions, it will be of paramount importance to establish a reliable communication link between the vehicles (or astronauts) present on the Moon's surface and an Earth station. Alternative choices consider radio-frequency (RF), optical, and hybrid optical-RF solutions. In this paper, we focus on the RF transmission case. Recent works evidenced how diversity is required to face multipath fading issues due to the reflection of electromagnetic rays on the Lunar surface. For this reason, suitable waveforms, which are robust against multi path distortion should be considered. In this work, we propose multicarrier Orthogonal Frequency Division Multiplexing (OFDM), Single-Carrier OFDM (SC-OFDM), and Constant-Envelope OFDM (CE-OFDM). The comparative results will be discussed in order to select the best solution to cope with the various tradeoffs between link performance, spectral efficiency, and computational complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信