基于峰值电流模式控制的双向有源箝位正激变换器有源电池平衡的动态建模

K. Shi, T. Dinh, J. Marco
{"title":"基于峰值电流模式控制的双向有源箝位正激变换器有源电池平衡的动态建模","authors":"K. Shi, T. Dinh, J. Marco","doi":"10.1109/ICMECT.2019.8932128","DOIUrl":null,"url":null,"abstract":"This paper presents the dynamic modelling of a bidirectional active clamp forward converter with synchronous rectifier (ACFC-SR) active cell balancing (ACB) applications. A switching model, an average model, and a small-signal model of the converter with peak current mode control (PCM) are developed. The developed models can be combined with the common ACB control system model such that the overall ACB control system performance can be accessed, such as the stability, the robustness against input voltage disturbances, and the tuning of multi-loop control parameters etc. The model-based design of the control algorithm for the overall ACB control system including both battery cell and power converter can be underpinned by the developed model. The influences of the harmonics and fast dynamics due to the use of power electronics on battery cell performance (e.g. battery ageing) will be further investigated. The transfer functions and bode plots of the converter is presented and the simulation results are carried out to verify the accuracy of models.","PeriodicalId":309525,"journal":{"name":"2019 23rd International Conference on Mechatronics Technology (ICMT)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Dynamic Modelling of the Bidirectional Active Clamp Forward Converter with Peak Current Mode Control for Active Cell Balancing\",\"authors\":\"K. Shi, T. Dinh, J. Marco\",\"doi\":\"10.1109/ICMECT.2019.8932128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the dynamic modelling of a bidirectional active clamp forward converter with synchronous rectifier (ACFC-SR) active cell balancing (ACB) applications. A switching model, an average model, and a small-signal model of the converter with peak current mode control (PCM) are developed. The developed models can be combined with the common ACB control system model such that the overall ACB control system performance can be accessed, such as the stability, the robustness against input voltage disturbances, and the tuning of multi-loop control parameters etc. The model-based design of the control algorithm for the overall ACB control system including both battery cell and power converter can be underpinned by the developed model. The influences of the harmonics and fast dynamics due to the use of power electronics on battery cell performance (e.g. battery ageing) will be further investigated. The transfer functions and bode plots of the converter is presented and the simulation results are carried out to verify the accuracy of models.\",\"PeriodicalId\":309525,\"journal\":{\"name\":\"2019 23rd International Conference on Mechatronics Technology (ICMT)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 23rd International Conference on Mechatronics Technology (ICMT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMECT.2019.8932128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 23rd International Conference on Mechatronics Technology (ICMT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMECT.2019.8932128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种采用同步整流器(ACFC-SR)的双向有源箝位正激变换器的动态建模方法。建立了具有峰值电流模式控制(PCM)的变换器的开关模型、平均模型和小信号模型。所建立的模型可以与常用的ACB控制系统模型相结合,从而获得ACB控制系统的整体性能,如稳定性、对输入电压扰动的鲁棒性、多环控制参数的整定等。基于模型的ACB控制系统控制算法设计,包括电池单元和电源变换器。将进一步研究电力电子设备对电池性能(如电池老化)的谐波和快速动态的影响。给出了该变换器的传递函数和波德图,并通过仿真结果验证了模型的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Modelling of the Bidirectional Active Clamp Forward Converter with Peak Current Mode Control for Active Cell Balancing
This paper presents the dynamic modelling of a bidirectional active clamp forward converter with synchronous rectifier (ACFC-SR) active cell balancing (ACB) applications. A switching model, an average model, and a small-signal model of the converter with peak current mode control (PCM) are developed. The developed models can be combined with the common ACB control system model such that the overall ACB control system performance can be accessed, such as the stability, the robustness against input voltage disturbances, and the tuning of multi-loop control parameters etc. The model-based design of the control algorithm for the overall ACB control system including both battery cell and power converter can be underpinned by the developed model. The influences of the harmonics and fast dynamics due to the use of power electronics on battery cell performance (e.g. battery ageing) will be further investigated. The transfer functions and bode plots of the converter is presented and the simulation results are carried out to verify the accuracy of models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信