一种基于投影双支持向量机的图像分割主动轮廓模型

Xiaomin Xie, Tingting Wang
{"title":"一种基于投影双支持向量机的图像分割主动轮廓模型","authors":"Xiaomin Xie, Tingting Wang","doi":"10.1109/M2VIP.2016.7827264","DOIUrl":null,"url":null,"abstract":"This paper presents an alternative criterion derived from the least squares projection twin support vector machine (LSPTSVM) for image segmentation. The proposed model treats image segmentation as pattern classification problem, and hence tries to seek the projected axis and center for the foreground and background intensities respectively. With level set representation, the discriminative function of LSTSVM is incorporated into the energy function of the active contour model (ACM), and drives the contour evolution accordingly. Experiment results demonstrate that our model holds the higher segmentation accuracy and more noise robustness, compared with the stand-alone CV and LSPTSVM models.","PeriodicalId":125468,"journal":{"name":"2016 23rd International Conference on Mechatronics and Machine Vision in Practice (M2VIP)","volume":"166 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A projection twin SVM-based active contour model for image segmentation\",\"authors\":\"Xiaomin Xie, Tingting Wang\",\"doi\":\"10.1109/M2VIP.2016.7827264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an alternative criterion derived from the least squares projection twin support vector machine (LSPTSVM) for image segmentation. The proposed model treats image segmentation as pattern classification problem, and hence tries to seek the projected axis and center for the foreground and background intensities respectively. With level set representation, the discriminative function of LSTSVM is incorporated into the energy function of the active contour model (ACM), and drives the contour evolution accordingly. Experiment results demonstrate that our model holds the higher segmentation accuracy and more noise robustness, compared with the stand-alone CV and LSPTSVM models.\",\"PeriodicalId\":125468,\"journal\":{\"name\":\"2016 23rd International Conference on Mechatronics and Machine Vision in Practice (M2VIP)\",\"volume\":\"166 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 23rd International Conference on Mechatronics and Machine Vision in Practice (M2VIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/M2VIP.2016.7827264\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 23rd International Conference on Mechatronics and Machine Vision in Practice (M2VIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/M2VIP.2016.7827264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种基于最小二乘投影双支持向量机(LSPTSVM)的图像分割准则。该模型将图像分割视为模式分类问题,分别寻求前景和背景强度的投影轴和投影中心。通过水平集表示,LSTSVM的判别函数被纳入活动轮廓模型(ACM)的能量函数中,并相应地驱动轮廓演化。实验结果表明,与独立的CV和LSPTSVM模型相比,我们的模型具有更高的分割精度和更强的噪声鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A projection twin SVM-based active contour model for image segmentation
This paper presents an alternative criterion derived from the least squares projection twin support vector machine (LSPTSVM) for image segmentation. The proposed model treats image segmentation as pattern classification problem, and hence tries to seek the projected axis and center for the foreground and background intensities respectively. With level set representation, the discriminative function of LSTSVM is incorporated into the energy function of the active contour model (ACM), and drives the contour evolution accordingly. Experiment results demonstrate that our model holds the higher segmentation accuracy and more noise robustness, compared with the stand-alone CV and LSPTSVM models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信