基于振动谱新特征的感应电机断条智能诊断

A. Sadoughi, M. Ebrahimi, M. Moalem, S. Sadri
{"title":"基于振动谱新特征的感应电机断条智能诊断","authors":"A. Sadoughi, M. Ebrahimi, M. Moalem, S. Sadri","doi":"10.1109/DEMPED.2007.4393079","DOIUrl":null,"url":null,"abstract":"This paper presents an intelligent method for diagnosing broken bars in induction motors. The method is based on training a neural network using new features extracted from vibration spectrum. These fault related features depend on slip. The exact value of slip can be determined using vibration spectrum; therefore, a vibration sensor is the only required sensor. The method has been able to diagnose correctly in all the laboratory tests.","PeriodicalId":185737,"journal":{"name":"2007 IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Intelligent Diagnosis of Broken Bars in Induction Motors Based on New Features in Vibration Spectrum\",\"authors\":\"A. Sadoughi, M. Ebrahimi, M. Moalem, S. Sadri\",\"doi\":\"10.1109/DEMPED.2007.4393079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an intelligent method for diagnosing broken bars in induction motors. The method is based on training a neural network using new features extracted from vibration spectrum. These fault related features depend on slip. The exact value of slip can be determined using vibration spectrum; therefore, a vibration sensor is the only required sensor. The method has been able to diagnose correctly in all the laboratory tests.\",\"PeriodicalId\":185737,\"journal\":{\"name\":\"2007 IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives\",\"volume\":\"142 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DEMPED.2007.4393079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEMPED.2007.4393079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

提出了一种感应电动机断条的智能诊断方法。该方法基于使用从振动谱中提取的新特征来训练神经网络。这些与断层有关的特征取决于滑动。利用振动谱可以确定滑移的准确值;因此,振动传感器是唯一需要的传感器。该方法在所有实验室试验中均能正确诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intelligent Diagnosis of Broken Bars in Induction Motors Based on New Features in Vibration Spectrum
This paper presents an intelligent method for diagnosing broken bars in induction motors. The method is based on training a neural network using new features extracted from vibration spectrum. These fault related features depend on slip. The exact value of slip can be determined using vibration spectrum; therefore, a vibration sensor is the only required sensor. The method has been able to diagnose correctly in all the laboratory tests.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信