理解跨GPU程序生命周期的时变漏洞

Hao Qiu, Semiu A. Olowogemo, B. Lin, W. H. Robinson, D. Limbrick
{"title":"理解跨GPU程序生命周期的时变漏洞","authors":"Hao Qiu, Semiu A. Olowogemo, B. Lin, W. H. Robinson, D. Limbrick","doi":"10.1109/DFT56152.2022.9962365","DOIUrl":null,"url":null,"abstract":"Time-varying behaviors of GPU program vulnerability could be exploited to reduce overheads for fault-tolerant designs. However, the inherent parallelism and performance overheads for massive fault injection (FI) hindered such assessments using FI. NVBitFI, a GPU FI tool featuring high-performance and good compatibility, allows time-varying vulnerability evaluations using FI within a reasonable time. We extended NVBitFI to control FI tests on the temporal dimension. A scalable workflow characterizing the time-varying vulnerability of GPU programs at two granularities is presented. A convenient approach to profile vulnerability with actual GPU time is also proposed. Results obtained from 60K fault injections demonstrated the feasibility of the proposed methodologies. A case study exploring the improved instruction-level grouping is presented. More than 340K faults are injected into the vectorAdd kernel to show the possibility to generalize the time-varying behavior of smaller inputs to realistic workloads with large inputs.","PeriodicalId":411011,"journal":{"name":"2022 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding time-varying vulnerability accross GPU Program Lifetime\",\"authors\":\"Hao Qiu, Semiu A. Olowogemo, B. Lin, W. H. Robinson, D. Limbrick\",\"doi\":\"10.1109/DFT56152.2022.9962365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time-varying behaviors of GPU program vulnerability could be exploited to reduce overheads for fault-tolerant designs. However, the inherent parallelism and performance overheads for massive fault injection (FI) hindered such assessments using FI. NVBitFI, a GPU FI tool featuring high-performance and good compatibility, allows time-varying vulnerability evaluations using FI within a reasonable time. We extended NVBitFI to control FI tests on the temporal dimension. A scalable workflow characterizing the time-varying vulnerability of GPU programs at two granularities is presented. A convenient approach to profile vulnerability with actual GPU time is also proposed. Results obtained from 60K fault injections demonstrated the feasibility of the proposed methodologies. A case study exploring the improved instruction-level grouping is presented. More than 340K faults are injected into the vectorAdd kernel to show the possibility to generalize the time-varying behavior of smaller inputs to realistic workloads with large inputs.\",\"PeriodicalId\":411011,\"journal\":{\"name\":\"2022 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DFT56152.2022.9962365\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DFT56152.2022.9962365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用GPU程序漏洞的时变行为可以减少容错设计的开销。然而,大规模故障注入(FI)固有的并行性和性能开销阻碍了使用FI进行此类评估。NVBitFI是一款高性能、兼容性好的GPU FI工具,允许在合理时间内使用FI进行时变漏洞评估。我们扩展了NVBitFI来控制时间维度上的FI测试。提出了一种描述GPU程序在两个粒度上时变漏洞的可扩展工作流。提出了一种利用实际GPU时间来分析漏洞的简便方法。从60K断层注入中获得的结果证明了所提出方法的可行性。本文提出了一种改进的教学级分组方法。在vectorAdd内核中注入了340K以上的故障,以显示将较小输入的时变行为推广到具有大输入的实际工作负载的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Understanding time-varying vulnerability accross GPU Program Lifetime
Time-varying behaviors of GPU program vulnerability could be exploited to reduce overheads for fault-tolerant designs. However, the inherent parallelism and performance overheads for massive fault injection (FI) hindered such assessments using FI. NVBitFI, a GPU FI tool featuring high-performance and good compatibility, allows time-varying vulnerability evaluations using FI within a reasonable time. We extended NVBitFI to control FI tests on the temporal dimension. A scalable workflow characterizing the time-varying vulnerability of GPU programs at two granularities is presented. A convenient approach to profile vulnerability with actual GPU time is also proposed. Results obtained from 60K fault injections demonstrated the feasibility of the proposed methodologies. A case study exploring the improved instruction-level grouping is presented. More than 340K faults are injected into the vectorAdd kernel to show the possibility to generalize the time-varying behavior of smaller inputs to realistic workloads with large inputs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信