G. C. Patil, Vijaysinh H. Bonge, M. Malode, Rahul G. Jain
{"title":"一种用于低功耗纳米级数字集成电路的新型部分绝缘无结晶体管","authors":"G. C. Patil, Vijaysinh H. Bonge, M. Malode, Rahul G. Jain","doi":"10.1109/ICEMELEC.2014.7151171","DOIUrl":null,"url":null,"abstract":"In this paper, a novel device structure named as partially insulated (Pi-OX) junctionless transistor (JLT) is proposed and the simulated results below 20 nm have been compared with existing silicon-on-insulator (SOI) JLT. Further, drain-induced barrier lowering (DIBL), subthreshold swing (SS), on-state drive current (ION), off-state leakage current (IOFF), ION/IOFF ratio and static power dissipation (PSTAT) of the proposed Pi-OXJLT and SOIJLT has also been compared. It has been found that, IOFF, DIBL and SS in the case of proposed Pi-OXJLT are reduced by 57%, 17% and 10% respectively over the existing SOIJLT device. The fabrication flow of the proposed Pi-OXJLT is proposed.","PeriodicalId":186054,"journal":{"name":"2014 IEEE 2nd International Conference on Emerging Electronics (ICEE)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A novel partially insulated junctionless transistor for low power nanoscale digital integrated circuits\",\"authors\":\"G. C. Patil, Vijaysinh H. Bonge, M. Malode, Rahul G. Jain\",\"doi\":\"10.1109/ICEMELEC.2014.7151171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel device structure named as partially insulated (Pi-OX) junctionless transistor (JLT) is proposed and the simulated results below 20 nm have been compared with existing silicon-on-insulator (SOI) JLT. Further, drain-induced barrier lowering (DIBL), subthreshold swing (SS), on-state drive current (ION), off-state leakage current (IOFF), ION/IOFF ratio and static power dissipation (PSTAT) of the proposed Pi-OXJLT and SOIJLT has also been compared. It has been found that, IOFF, DIBL and SS in the case of proposed Pi-OXJLT are reduced by 57%, 17% and 10% respectively over the existing SOIJLT device. The fabrication flow of the proposed Pi-OXJLT is proposed.\",\"PeriodicalId\":186054,\"journal\":{\"name\":\"2014 IEEE 2nd International Conference on Emerging Electronics (ICEE)\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 2nd International Conference on Emerging Electronics (ICEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEMELEC.2014.7151171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 2nd International Conference on Emerging Electronics (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEMELEC.2014.7151171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A novel partially insulated junctionless transistor for low power nanoscale digital integrated circuits
In this paper, a novel device structure named as partially insulated (Pi-OX) junctionless transistor (JLT) is proposed and the simulated results below 20 nm have been compared with existing silicon-on-insulator (SOI) JLT. Further, drain-induced barrier lowering (DIBL), subthreshold swing (SS), on-state drive current (ION), off-state leakage current (IOFF), ION/IOFF ratio and static power dissipation (PSTAT) of the proposed Pi-OXJLT and SOIJLT has also been compared. It has been found that, IOFF, DIBL and SS in the case of proposed Pi-OXJLT are reduced by 57%, 17% and 10% respectively over the existing SOIJLT device. The fabrication flow of the proposed Pi-OXJLT is proposed.