关于超大整数乘数的构造

G. Hotz, P. Molitor, W. Zimmer
{"title":"关于超大整数乘数的构造","authors":"G. Hotz, P. Molitor, W. Zimmer","doi":"10.1109/EUASIC.1991.212854","DOIUrl":null,"url":null,"abstract":"In this paper the authors present a fast shared multiplier for very large numbers. Realizing this concept for any input length (e.g. 512, 1024 or 2048 bits) only needs three types of chips. One of them is a 32-bit multiplier which does not require any more development. They expect a speed up of factor 100-1000 (dependent on the input length) in comparison to a simulation by software. A further speed up of applications using many independent multiplications can be attained by pipelining the multiplier. The 1024-bit multiplier can be realized using only four platines at a rough estimate. The multiplier itself has yet to be realized.<<ETX>>","PeriodicalId":118990,"journal":{"name":"Euro ASIC '91","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the construction of very large integer multipliers\",\"authors\":\"G. Hotz, P. Molitor, W. Zimmer\",\"doi\":\"10.1109/EUASIC.1991.212854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper the authors present a fast shared multiplier for very large numbers. Realizing this concept for any input length (e.g. 512, 1024 or 2048 bits) only needs three types of chips. One of them is a 32-bit multiplier which does not require any more development. They expect a speed up of factor 100-1000 (dependent on the input length) in comparison to a simulation by software. A further speed up of applications using many independent multiplications can be attained by pipelining the multiplier. The 1024-bit multiplier can be realized using only four platines at a rough estimate. The multiplier itself has yet to be realized.<<ETX>>\",\"PeriodicalId\":118990,\"journal\":{\"name\":\"Euro ASIC '91\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Euro ASIC '91\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUASIC.1991.212854\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Euro ASIC '91","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUASIC.1991.212854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了一个非常大的数的快速共享乘子。对于任何输入长度(例如512、1024或2048位)实现这一概念只需要三种类型的芯片。其中之一是32位乘法器,它不需要任何进一步的开发。与软件模拟相比,他们预计速度将提高100-1000倍(取决于输入长度)。通过将乘数流水线化,可以进一步提高使用多个独立乘法的应用程序的速度。粗略估计,1024位乘法器仅使用四个铂就可以实现。乘数本身还有待实现
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the construction of very large integer multipliers
In this paper the authors present a fast shared multiplier for very large numbers. Realizing this concept for any input length (e.g. 512, 1024 or 2048 bits) only needs three types of chips. One of them is a 32-bit multiplier which does not require any more development. They expect a speed up of factor 100-1000 (dependent on the input length) in comparison to a simulation by software. A further speed up of applications using many independent multiplications can be attained by pipelining the multiplier. The 1024-bit multiplier can be realized using only four platines at a rough estimate. The multiplier itself has yet to be realized.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信