基于贝叶斯推理预测的人口密集公共场所异常分析

Q. Ma, Chao Qi
{"title":"基于贝叶斯推理预测的人口密集公共场所异常分析","authors":"Q. Ma, Chao Qi","doi":"10.1109/ANTHOLOGY.2013.6785017","DOIUrl":null,"url":null,"abstract":"Gathering is an important sign of social security event in public places. Timely detection of abnormal gathering contributes to effective warning, thereby avoiding the occurrence of serious events. In this paper, we identify abnormal situation according to a reasonable safe range based on people flow characteristics of public places. We employ Bayesian inference forecasting approach to cope with emergency forecasting and early warning.","PeriodicalId":203169,"journal":{"name":"IEEE Conference Anthology","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Abnormality analysis for densely-populated public places based on Bayesian inference forecasting\",\"authors\":\"Q. Ma, Chao Qi\",\"doi\":\"10.1109/ANTHOLOGY.2013.6785017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gathering is an important sign of social security event in public places. Timely detection of abnormal gathering contributes to effective warning, thereby avoiding the occurrence of serious events. In this paper, we identify abnormal situation according to a reasonable safe range based on people flow characteristics of public places. We employ Bayesian inference forecasting approach to cope with emergency forecasting and early warning.\",\"PeriodicalId\":203169,\"journal\":{\"name\":\"IEEE Conference Anthology\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Conference Anthology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANTHOLOGY.2013.6785017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Conference Anthology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANTHOLOGY.2013.6785017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

集会是公共场所发生社会治安事件的重要标志。及时发现异常聚集有助于有效预警,从而避免严重事件的发生。本文根据公共场所的人流特点,在合理的安全范围内识别异常情况。我们采用贝叶斯推理预测方法来应对突发事件的预测和预警。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Abnormality analysis for densely-populated public places based on Bayesian inference forecasting
Gathering is an important sign of social security event in public places. Timely detection of abnormal gathering contributes to effective warning, thereby avoiding the occurrence of serious events. In this paper, we identify abnormal situation according to a reasonable safe range based on people flow characteristics of public places. We employ Bayesian inference forecasting approach to cope with emergency forecasting and early warning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信